Replacement Set and Solution Set in Set Notation

We will discuss here about the replacement set and solution set in set notation.

Replacement Set: The set, from which the values of the variable which involved in the inequation, are chosen, is known as replacement set.

Solution Set: A solution to an inequation is a number chosen from the replacement set which, satisfy the given inequation. The set of all solutions of an inequation is known as solution set of the inequation.

For example:

Let the given inequation be y < 6, if:

(i) The replacement set = N, the set of natural numbers;

The solution set = {1, 2, 3, 4, 5}.

(ii) The replacement set = W, the set of whole numbers;

The Solution set = {0, 2, 3, 4, 5}.

(iii) The replacement set = Z or I, the set of integers;

The solution set = {........., -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}

But, if the replacement set is the set of real numbers, the solution set can only be described in set-buider form, i.e., {x : x ∈ R and y < 6}.

 

Solved example on replacement set and solution set in set notation:

1. If the replacement set is the set of whole numbers (W), find the solution set of 4z – 2 < 2z + 10.

Solution:

4z – 2 < 2z + 10

⟹ 4z – 2 + 2< 2z + 10 + 2, [Adding 2 on both the sides]

⟹ 4z < 2z + 12

⟹ 4z – 2z < 2z + 12 – 2z, [Subtracting 2z from both sides]

⟹2z < 12

⟹ \(\frac{2z}{2}\) < \(\frac{12}{2}\), [Dividing both sides by 2]

⟹ z < 6

Since the replacement set = W (whole numbers)

Therefore, the solution set = {0, 1, 2, 3, 4, 5}


2. If the replacement set is the set of real numbers (R), find the solution set of 3 - 2x < 9

Solution:

3 - 2x < 9

⟹ - 2x < 9 – 3, [by transferring 3 on the other side]

⟹ -2x < 6

⟹ \(\frac{-2x}{-2}\) > \(\frac{6}{-2}\), [Dividing both sides by -2]

⟹ x > -3

Since the replacement set = R (real numbers)

Therefore, the solution set = {x | x > -3, x ∈ R}.


3. If the replacement set is the set of integers, (I or Z), between -6 and 8, find the solution set of 15 – 3d > d - 3

Solution:

15 – 3d > d - 3

⟹ 15 – 3d - 15 > d – 3 – 15, [Subtracting 15 from both sides]

⟹ -3d > d - 18

⟹ -3d - d> d – 18 – d, [Subtracting d from both sides]

⟹-4d > -18

⟹ \(\frac{-4d}{-4}\) < \(\frac{-18}{-4}\), [Dividing both sides by -4]

⟹ d < 4.5

Since, the replacement is the set of integers between -6 and 8

Therefore, the solution set = {-5, -4, -3, -2, -1, 0, 1, 2, 3, 4}




10th Grade Math

From Condition of Perpendicularity of Two Straight Lines to HOME




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Subtraction of Decimals | Subtracting Decimals | Decimal Subtraction

    Apr 24, 25 03:25 PM

    Subtraction of Decimals
    We will discuss here about the subtraction of decimals. Decimals are subtracted in the same way as we subtract ordinary numbers. We arrange the digits in columns

    Read More

  2. How to Do Long Division? | Method | Steps | Examples | Worksheets |Ans

    Apr 24, 25 10:18 AM

    Long Division and Short Division Forms
    As we know that the division is to distribute a given value or quantity into groups having equal values. In long division, values at the individual place (Thousands, Hundreds, Tens, Ones) are dividend…

    Read More

  3. Division by Two-Digit Numbers | Knowledge of Estimation | Division

    Apr 24, 25 10:12 AM

    Divide 5-Digit by 2-Digit Number
    In division by two-digit numbers we will practice dividing two, three, four and five digits by two-digit numbers. Consider the following examples on division by two-digit numbers: Let us use our knowl…

    Read More

  4. Addition of Decimals | How to Add Decimals? | Adding Decimals|Addition

    Apr 24, 25 01:45 AM

    Addition of Decimals
    We will discuss here about the addition of decimals. Decimals are added in the same way as we add ordinary numbers. We arrange the digits in columns and then add as required. Let us consider some

    Read More

  5. Addition of Like Fractions | Examples | Videos | Worksheet | Fractions

    Apr 23, 25 09:23 AM

    Adding Like Fractions
    To add two or more like fractions we simplify add their numerators. The denominator remains same. Thus, to add the fractions with the same denominator, we simply add their numerators and write the com…

    Read More