Replacement Set and Solution Set in Set Notation

We will discuss here about the replacement set and solution set in set notation.

Replacement Set: The set, from which the values of the variable which involved in the inequation, are chosen, is known as replacement set.

Solution Set: A solution to an inequation is a number chosen from the replacement set which, satisfy the given inequation. The set of all solutions of an inequation is known as solution set of the inequation.

For example:

Let the given inequation be y < 6, if:

(i) The replacement set = N, the set of natural numbers;

The solution set = {1, 2, 3, 4, 5}.

(ii) The replacement set = W, the set of whole numbers;

The Solution set = {0, 2, 3, 4, 5}.

(iii) The replacement set = Z or I, the set of integers;

The solution set = {........., -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}

But, if the replacement set is the set of real numbers, the solution set can only be described in set-buider form, i.e., {x : x ∈ R and y < 6}.

 

Solved example on replacement set and solution set in set notation:

1. If the replacement set is the set of whole numbers (W), find the solution set of 4z – 2 < 2z + 10.

Solution:

4z – 2 < 2z + 10

⟹ 4z – 2 + 2< 2z + 10 + 2, [Adding 2 on both the sides]

⟹ 4z < 2z + 12

⟹ 4z – 2z < 2z + 12 – 2z, [Subtracting 2z from both sides]

⟹2z < 12

⟹ \(\frac{2z}{2}\) < \(\frac{12}{2}\), [Dividing both sides by 2]

⟹ z < 6

Since the replacement set = W (whole numbers)

Therefore, the solution set = {0, 1, 2, 3, 4, 5}


2. If the replacement set is the set of real numbers (R), find the solution set of 3 - 2x < 9

Solution:

3 - 2x < 9

⟹ - 2x < 9 – 3, [by transferring 3 on the other side]

⟹ -2x < 6

⟹ \(\frac{-2x}{-2}\) > \(\frac{6}{-2}\), [Dividing both sides by -2]

⟹ x > -3

Since the replacement set = R (real numbers)

Therefore, the solution set = {x | x > -3, x ∈ R}.


3. If the replacement set is the set of integers, (I or Z), between -6 and 8, find the solution set of 15 – 3d > d - 3

Solution:

15 – 3d > d - 3

⟹ 15 – 3d - 15 > d – 3 – 15, [Subtracting 15 from both sides]

⟹ -3d > d - 18

⟹ -3d - d> d – 18 – d, [Subtracting d from both sides]

⟹-4d > -18

⟹ \(\frac{-4d}{-4}\) < \(\frac{-18}{-4}\), [Dividing both sides by -4]

⟹ d < 4.5

Since, the replacement is the set of integers between -6 and 8

Therefore, the solution set = {-5, -4, -3, -2, -1, 0, 1, 2, 3, 4}




10th Grade Math

From Condition of Perpendicularity of Two Straight Lines to HOME




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Formation of Square and Rectangle | Construction of Square & Rectangle

    Jul 16, 25 02:45 AM

    Construction of a Square
    In formation of square and rectangle we will learn how to construct square and rectangle. Construction of a Square: We follow the method given below. Step I: We draw a line segment AB of the required…

    Read More

  2. Perimeter of a Figure | Perimeter of a Simple Closed Figure | Examples

    Jul 16, 25 02:33 AM

    Perimeter of a Figure
    Perimeter of a figure is explained here. Perimeter is the total length of the boundary of a closed figure. The perimeter of a simple closed figure is the sum of the measures of line-segments which hav…

    Read More

  3. Formation of Numbers | Smallest and Greatest Number| Number Formation

    Jul 15, 25 11:46 AM

    In formation of numbers we will learn the numbers having different numbers of digits. We know that: (i) Greatest number of one digit = 9,

    Read More

  4. 5th Grade Quadrilaterals | Square | Rectangle | Parallelogram |Rhombus

    Jul 15, 25 02:01 AM

    Square
    Quadrilaterals are known as four sided polygon.What is a quadrilateral? A closed figure made of our line segments is called a quadrilateral. For example:

    Read More

  5. 5th Grade Geometry Practice Test | Angle | Triangle | Circle |Free Ans

    Jul 14, 25 01:53 AM

    Name the Angles
    In 5th grade geometry practice test you will get different types of practice questions on lines, types of angle, triangles, properties of triangles, classification of triangles, construction of triang…

    Read More