Replacement Set and Solution Set in Set Notation

We will discuss here about the replacement set and solution set in set notation.

Replacement Set: The set, from which the values of the variable which involved in the inequation, are chosen, is known as replacement set.

Solution Set: A solution to an inequation is a number chosen from the replacement set which, satisfy the given inequation. The set of all solutions of an inequation is known as solution set of the inequation.

For example:

Let the given inequation be y < 6, if:

(i) The replacement set = N, the set of natural numbers;

The solution set = {1, 2, 3, 4, 5}.

(ii) The replacement set = W, the set of whole numbers;

The Solution set = {0, 2, 3, 4, 5}.

(iii) The replacement set = Z or I, the set of integers;

The solution set = {........., -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}

But, if the replacement set is the set of real numbers, the solution set can only be described in set-buider form, i.e., {x : x ∈ R and y < 6}.

 

Solved example on replacement set and solution set in set notation:

1. If the replacement set is the set of whole numbers (W), find the solution set of 4z – 2 < 2z + 10.

Solution:

4z – 2 < 2z + 10

⟹ 4z – 2 + 2< 2z + 10 + 2, [Adding 2 on both the sides]

⟹ 4z < 2z + 12

⟹ 4z – 2z < 2z + 12 – 2z, [Subtracting 2z from both sides]

⟹2z < 12

⟹ \(\frac{2z}{2}\) < \(\frac{12}{2}\), [Dividing both sides by 2]

⟹ z < 6

Since the replacement set = W (whole numbers)

Therefore, the solution set = {0, 1, 2, 3, 4, 5}


2. If the replacement set is the set of real numbers (R), find the solution set of 3 - 2x < 9

Solution:

3 - 2x < 9

⟹ - 2x < 9 – 3, [by transferring 3 on the other side]

⟹ -2x < 6

⟹ \(\frac{-2x}{-2}\) > \(\frac{6}{-2}\), [Dividing both sides by -2]

⟹ x > -3

Since the replacement set = R (real numbers)

Therefore, the solution set = {x | x > -3, x ∈ R}.


3. If the replacement set is the set of integers, (I or Z), between -6 and 8, find the solution set of 15 – 3d > d - 3

Solution:

15 – 3d > d - 3

⟹ 15 – 3d - 15 > d – 3 – 15, [Subtracting 15 from both sides]

⟹ -3d > d - 18

⟹ -3d - d> d – 18 – d, [Subtracting d from both sides]

⟹-4d > -18

⟹ \(\frac{-4d}{-4}\) < \(\frac{-18}{-4}\), [Dividing both sides by -4]

⟹ d < 4.5

Since, the replacement is the set of integers between -6 and 8

Therefore, the solution set = {-5, -4, -3, -2, -1, 0, 1, 2, 3, 4}




10th Grade Math

From Condition of Perpendicularity of Two Straight Lines to HOME




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Subtracting Integers | Subtraction of Integers |Fundamental Operations

    Jun 13, 24 02:51 AM

    Subtracting integers is the second operations on integers, among the four fundamental operations on integers. Change the sign of the integer to be subtracted and then add.

    Read More

  2. Properties of Subtracting Integers | Subtraction of Integers |Examples

    Jun 13, 24 02:28 AM

    The properties of subtracting integers are explained here along with the examples. 1. The difference (subtraction) of any two integers is always an integer. Examples: (a) (+7) – (+4) = 7 - 4 = 3

    Read More

  3. Math Only Math | Learn Math Step-by-Step | Worksheet | Videos | Games

    Jun 13, 24 12:11 AM

    Presenting math-only-math to kids, students and children. Mathematical ideas have been explained in the simplest possible way. Here you will have plenty of math help and lots of fun while learning.

    Read More

  4. Addition of Integers | Adding Integers on a Number Line | Examples

    Jun 12, 24 01:11 PM

    Addition of Integers
    We will learn addition of integers using number line. We know that counting forward means addition. When we add positive integers, we move to the right on the number line. For example to add +2 and +4…

    Read More

  5. Worksheet on Adding Integers | Integers Worksheets | Answers |Addition

    Jun 11, 24 07:15 PM

    Worksheet on Adding Integers
    Practice the questions given in the worksheet on adding integers. We know that the sum of any two integers is always an integer. I. Add the following integers:

    Read More