Rectangular Cartesian Coordinates of a Point

Take two intersecting lines XOX’ and YOY” in a plane which cut at O and are perpendicular to each other. Let P be a point in the plane. Draw perpendiculars from P to the line XoX’ and YoY’. 

Rectangular Cartesian Coordinates of a Point

Let them be PL and PM. Measure PL and PM in the same scale in mm, cm or m, etc. Let the measures of PL and PM be b units and a units respectively. Then (a, b) are called rectangular Cartesian coordinates of a point P.

The lines XOX’ and YOY’, called coordinate axes, together from the frame of reference in the Cartesian x-y plane for which

(i) XOX’ in called the x-axis,

(ii) YOY’ is called the y-axis, and

(iii) O is called the origin.

If (a, b) are the coordinates of the point P then a is called the x-coordinate or abscissa and b is called the y-coordinate or ordinate of a point P.

In the discussion above, we have seen that to determine the coordinates of the point P, we need to measure the lengths of PM and PL. We have found that the measures are a units and b units respectively.

Rectangular Cartesian Coordinates

But with the same measures of distances, the point P can be found in any of the three other positions in the same plane as shown in the adjoining diagram.

To determine the exact position of a point in a plane, we need to undedrstand the convention for signs of coordinates.

9th Grade Math

From Rectangular Cartesian Coordinates of a Point to HOME PAGE

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Shifting of Digits in a Number |Exchanging the Digits to Another Place

    May 19, 24 06:35 PM

    Shifting of Digits in a Number
    What is the Effect of shifting of digits in a number? Let us observe two numbers 1528 and 5182. We see that the digits are the same, but places are different in these two numbers. Thus, if the digits…

    Read More

  2. Formation of Greatest and Smallest Numbers | Arranging the Numbers

    May 19, 24 03:36 PM

    Formation of Greatest and Smallest Numbers
    the greatest number is formed by arranging the given digits in descending order and the smallest number by arranging them in ascending order. The position of the digit at the extreme left of a number…

    Read More

  3. Formation of Numbers with the Given Digits |Making Numbers with Digits

    May 19, 24 03:19 PM

    In formation of numbers with the given digits we may say that a number is an arranged group of digits. Numbers may be formed with or without the repetition of digits.

    Read More

  4. Arranging Numbers | Ascending Order | Descending Order |Compare Digits

    May 19, 24 02:23 PM

    Arranging Numbers
    We know, while arranging numbers from the smallest number to the largest number, then the numbers are arranged in ascending order. Vice-versa while arranging numbers from the largest number to the sma…

    Read More

  5. Comparison of Numbers | Compare Numbers Rules | Examples of Comparison

    May 19, 24 01:26 PM

    Rules for Comparison of Numbers
    Rule I: We know that a number with more digits is always greater than the number with less number of digits. Rule II: When the two numbers have the same number of digits, we start comparing the digits…

    Read More