Real number between Two Unequal Real Numbers

We will learn here ‘how to find a real number between two unequal real numbers?’.

If x, y are two real numbers,\(\frac{x + y}{2}\) is a real number lying between x and y.

If x, y are two positive real numbers, \(\sqrt{xy}\) is a real number lying between x and y.

If x, y are two positive real numbers such that x × y is not a perfect square of a rational number, \(\sqrt{xy}\) is an irrational number lying between x and y,

 

Solved examples to find real numbers between two real numbers:

1. Insert two irrational numbers between √2 and √7.

Solution:

Consider the squares of √2 and √7.

\(\left ( \sqrt{2} \right )^{2}\) =2 and \(\left ( \sqrt{7} \right )^{2}\) = 7.

Since the numbers 3 and 5 lie between 2 and 7 i.e., between \(\left ( \sqrt{2} \right )^{2}\) and \(\left ( \sqrt{7} \right )^{2}\), therefore, √3 and √5 lie between √2 and √7.

Hence two irrational numbers between √2 and √7 are √3 and √5.

Note: Since infinitely many irrational numbers between two distinct irrational numbers, √3 and √5 are not only irrational numbers between √2 and √7.


2. Find an irrational number between √2 and 2.

Solution:

A real number between √2 and 2 is \(\frac{\sqrt{2} + 2}{2}\), i.e., 1 + \(\frac{1}{2}\)√2.

But 1 is a rational number and \(\frac{1}{2}\)√2 is an irrational number. As the sum of a rational number and an irrational number is irrational, 1 + \(\frac{1}{2}\)√2 is an irrational number between √2 and 2.


3. Find an irrational number between 3 and 5.

Solution:

3 × 5 = 15, which is not a perfect square.

Therefore, \(\sqrt{15}\) is an irrational number between 3 and 5.


4. Write a rational number between √2 and √3.

Solution:

Take a number between 2 and 3, which is a perfect square of a rational number. Clearly 2.25, i.e., is such a number.

Therefore, 2 < (1.5)\(^{2}\) < 3.

Hence,√2 < 1.5 √3.

Therefore, 1.5 is a rational number between √2 and √3.

Note: 2.56, 2.89 are also perfect squares of rational numbers lying between 2 and 3. So, 1.67 and 1.7 are also rational numbers lying between √2 and √3.

There are many more rational numbers between √2 and √3.


5. Insert three rational numbers 3√2 and 2√3.

Solution:

Here 3√2 = √9 × √2 = \(\sqrt{18}\)  and 2√3 = √4 × √3 = \(\sqrt{12}\).

13, 14, 15, 16 and 17 lies between 12 and 18.

Therefore, \(\sqrt{13}\), \(\sqrt{14}\), \(\sqrt{15}\) and \(\sqrt{17}\) are all the rational numbers between 3√2 and 2√3.






9th Grade Math

From Real number between Two Unequal Real Numbers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Decimal Place Value Chart |Tenths Place |Hundredths Place |Thousandths

    Jul 19, 24 03:26 PM

    Decimal place value chart
    Decimal place value chart are discussed here: The first place after the decimal is got by dividing the number by 10; it is called the tenths place.

    Read More

  2. Definition of Decimal Numbers | Decimal Part | Decimal Point |Examples

    Jul 19, 24 11:13 AM

    Decimal Numbers
    Definition of decimal numbers: We have learnt that the decimals are an extension of our number system. We also know that decimals can be considered as fractions whose denominators are 10, 100, 1000

    Read More

  3. Addition and Subtraction of Fractions | Solved Examples | Worksheet

    Jul 19, 24 02:00 AM

    Addition and subtraction of fractions are discussed here with examples. To add or subtract two or more fractions, proceed as under: (i) Convert the mixed fractions (if any.) or natural numbers

    Read More

  4. Fractions in Descending Order |Arranging Fractions an Descending Order

    Jul 19, 24 02:00 AM

    We will discuss here how to arrange the fractions in descending order. Solved examples for arranging in descending order: 1. Arrange the following fractions 5/6, 7/10, 11/20 in descending order. First…

    Read More

  5. Fractions in Ascending Order | Arranging Fractions | Worksheet |Answer

    Jul 19, 24 01:59 AM

    Comparison Fractions
    We will discuss here how to arrange the fractions in ascending order. Solved examples for arranging in ascending order: 1. Arrange the following fractions 5/6, 8/9, 2/3 in ascending order. First we fi…

    Read More