Subscribe to our YouTube channel for the latest videos, updates, and tips.


Range and Interquartile Range

The variates of a data are real numbers (usually integers). So, thay are scattered over a part of the number line. An investigator will always like to know the nature of the scattering of the variates. The arithmetic numbers associated with distributions to show the nature of scattering are known as measures of dispersion. Simplest of them are:

(i) Range

(ii) Interquartile Range.


Range: The difference of the greatest variate and the smallest variate in a distribution is called the range of the distribution.

Interquartile Range: The interquartile range of a distribution is Q3 - Q1, where Q1 = lower quartile and Q3 = upper quartile.


12(Q3 - Q1) is known as semi-interquartile range.


Solved Examples on Range and Interquartile Range:

1. The following data represent the number of books issued by a library on 12 different days.

96, 180, 98, 75, 270, 80, 102, 100, 94, 75, 200, 610.

Find the (i) interquartile range, (ii) semi-interquartile range and (iii) range.

Solution:

Write the data in ascending order, we have

75, 75, 80, 94, 96, 98, 100, 102, 180, 200, 270, 610.

Here, N = 12.

So, N4 = 124 = 3, which is an integer.

Therefore, the mean of the 3rd and 4th variates is Q1 80+942 = 1742 = 87.

So, 3N4 = 3×124

                                = 364

                                = 9, i.e., 3N4 is an integer.

Therefore, the mean of the 9th and 10th variates is Q3 (the upper quartile).

Therefore, Q3 = 180+2002

                     = 3802

                     = 190.

(i) Interquartile Range = Q3 - Q1 = 190 - 87 = 103

(ii) Semi-interquartile Range = 12(Q3 - Q1)

                                          = 12(190 - 87)

                                          = 1032

                                          = 51.5.

(iii) Range = Highest Variate -  Lowest Variate 

                = 610 - 75

                = 535.

Range and Interquartile Range


2. Marks obtained by 70 students in an examination are given below.

Find the interquartile range.


Marks

25

50

35

65

45

70

Number of Students

6

15

12

10

18

9


Solution:

Arrange the data in ascending order, the cumulative-frequency table is constructed as below.


Marks

25

35

45

50

65

70

Frequency

6

12

18

15

10

9

Cumulative Frequency

6

18

36

51

61

70


Here, N4 = 704 = 352 = 17.5.

Cumulative frequency just greater than 17.5 is 18.

The variate whose cumulative frequency is 18, is 35. 

So, Q1 = 35.


Again, 3N4 = 3×704 = 1054 = 52.5.

Cumulative frequency just greater than 52.5 is 61.

The variate whose cumulative frequency is 61, is 65.

Therefore, Q3 = 65.


Thus, Interquartile Range = Q3 - Q= 65 - 35 = 30.






9th Grade Math

From Range & Interquartile Range to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 10, 25 11:41 AM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More