Quadratic Equation cannot have more than Two Roots

We will discuss here that a quadratic equation cannot have more than two roots.

Proof:

Let us assumed that α, β and γ be three distinct roots of the quadratic equation of the general form ax\(^{2}\) + bx + c = 0, where a, b, c are three real numbers and a ≠ 0. Then, each one of α, β and γ will satisfy the given equation ax\(^{2}\) + bx + c = 0.

Therefore,

aα\(^{2}\) + bα + c = 0 ............... (i)

aβ\(^{2}\) + bβ + c = 0 ............... (ii)

aγ\(^{2}\) + bγ + c = 0 ............... (iii)

Subtracting (ii) from (i), we get

a(α\(^{2}\) - β\(^{2}\)) + b(α - β) = 0

⇒ (α - β)[a(α + β) + b] = 0

⇒ a(α + β) + b = 0, ............... (iv) [Since, α and β are distinct, Therefore, (α - β) ≠ 0]

Similarly, Subtracting (iii) from (ii), we get

a(β\(^{2}\) - γ\(^{2}\)) + b(β - γ) = 0

⇒ (β - γ)[a(β + γ) + b] = 0

⇒ a(β + γ) + b = 0, ............... (v) [Since, β and γ are distinct, Therefore, (β - γ) ≠ 0]

Again subtracting (v) from (iv), we get

a(α - γ) = 0

⇒ either a = 0 or, (α - γ) = 0

But this is not possible, because by the hypothesis a ≠ 0 and α - γ ≠ 0 since α ≠ γ

α and γ are distinct.

Thus, a(α - γ) = 0 cannot be true.

Therefore, our assumption that a quadratic equation has three distinct real roots is wrong.

Hence, every quadratic equation cannot have more than 2 roots.

 

Note: If a condition in the form of a quadratic equation is satisfied by more than two values of the unknown then the condition represents an identity.

Consider the quadratic equation of the general from ax\(^{2}\) + bx + c = 0 (a ≠ 0) ............... (i)


Solved examples to find that a quadratic equation cannot have more than two distinct roots

Solve the quadratic equation 3x\(^{2}\) - 4x - 4 = 0 by using the general expressions for the roots of a quadratic equation.

Solution:

The given equation is 3x\(^{2}\) - 4x - 4 = 0

Comparing the given equation with the general form of the quadratic equation ax^2 + bx + c = 0, we get

a = 3; b = -4 and c = -4

Substituting the values of a, b and c in α = \(\frac{- b - \sqrt{b^{2} - 4ac}}{2a}\) and β = \(\frac{- b + \sqrt{b^{2} - 4ac}}{2a}\) we get

α = \(\frac{- (-4) - \sqrt{(-4)^{2} - 4(3)(-4)}}{2(3)}\) and β = \(\frac{- (-4) + \sqrt{(-4)^{2} - 4(3)(-4)}}{2(3)}\)

⇒ α = \(\frac{4 - \sqrt{16 + 48}}{6}\) and β =\(\frac{4 + \sqrt{16 + 48}}{6}\)

⇒ α = \(\frac{4 - \sqrt{64}}{6}\) and β =\(\frac{4 + \sqrt{64}}{6}\)

⇒ α = \(\frac{4 - 8}{6}\) and β =\(\frac{4 + 8}{6}\)

⇒ α = \(\frac{-4}{6}\) and β =\(\frac{12}{6}\)

⇒ α = -\(\frac{2}{3}\) and β = 2

Therefore, the roots of the given quadratic equation are 2 and -\(\frac{2}{3}\).

Hence, a quadratic equation cannot have more than two distinct roots.



11 and 12 Grade Math 

From Quadratic Equation cannot have more than Two Roots to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. What are Parallel Lines in Geometry? | Two Parallel Lines | Examples

    Apr 19, 24 04:39 PM

    Examples of Parallel Lines
    In parallel lines when two lines do not intersect each other at any point even if they are extended to infinity. What are parallel lines in geometry? Two lines which do not intersect each other

    Read More

  2. Perpendicular Lines | What are Perpendicular Lines in Geometry?|Symbol

    Apr 19, 24 04:01 PM

    Perpendicular Lines
    In perpendicular lines when two intersecting lines a and b are said to be perpendicular to each other if one of the angles formed by them is a right angle. In other words, Set Square Set Square If two…

    Read More

  3. Fundamental Geometrical Concepts | Point | Line | Properties of Lines

    Apr 19, 24 01:50 PM

    Point P
    The fundamental geometrical concepts depend on three basic concepts — point, line and plane. The terms cannot be precisely defined. However, the meanings of these terms are explained through examples.

    Read More

  4. What is a Polygon? | Simple Closed Curve | Triangle | Quadrilateral

    Apr 19, 24 01:22 PM

    Square - Polygon
    What is a polygon? A simple closed curve made of three or more line-segments is called a polygon. A polygon has at least three line-segments.

    Read More

  5. Simple Closed Curves | Types of Closed Curves | Collection of Curves

    Apr 18, 24 01:36 AM

    Closed Curves Examples
    In simple closed curves the shapes are closed by line-segments or by a curved line. Triangle, quadrilateral, circle, etc., are examples of closed curves.

    Read More