Processing math: 100%

Subscribe to our YouTube channel for the latest videos, updates, and tips.


Pythagoras’ Theorem

The lengths of the sides of a right-angled triangle have a special relationship between them. This relation is widely used in many branches of mathematics, such as mensuration and trigonometry.

Pythagoras’ Theorem: In a right-angled triangle, the square on the hypotenuse is equal to the sum of the squares on the other two sides.

Given: Let XYZ be a triangle in which ∠YXZ = 90°.

YZ is the hypotenuse.

Pythagoras’ Theorem

To prove: XY2 + XZ2 = YZ2.

Construction: Draw XM ⊥YZ.

Therefore, ∠XMY = ∠XMZ = 90°.


Proof:

            Statement

            Reason

1. In ∆XYM and ∆XYZ,

(i) ∠XMY = ∠YXZ = 90°

(ii) ∠XYM = ∠XYZ

1.

(i) Given and by construction

(ii) Common angle

2. Therefore, ∆XYM ∼ ∆ZYX

2. BY AA criterion of similarity

3. Therefore, XYYZ = YMXY

3. Corresponding sides of similar triangle are proportional

4. Therefore, XY2 = YZ ∙ YM

4. By cross multiplication in statement 3.

5. In ∆XMZ and ∆XYZ,

(i) ∠XMY = ∠YXZ = 90°

(ii) ∠XZM = ∠XZY

5.

(i) Given and by construction

(ii) Common angle

6. Therefore, ∆XMZ ∼ ∆YXZ.

6. BY AA criterion of similarity

7. Therefore, XZYZ = MZXZ

7. Corresponding sides of similar triangle are proportional

8. Therefore, XZ2 = YZ ∙ MZ

8. By cross multiplication in statement 7.

9. Therefore, XY2 + XZ2 = YZ ∙ YM + YZ ∙ MZ

⟹ XY2 + XZ2 = YZ(YM+ MZ)

⟹ XY2 + XZ2 = YZ ∙ YZ

⟹ XY2 + XZ2 = YZ2

9. By adding statements 4 and 8


Problems on Pythagoras’ Theorem:

1. In ∆XYZ, ∠Y = 90°. If XY = 3 cm and YZ = 4 cm, find XZ.

Problems on Pythagoras’ Theorem

Solution:

By Pythagoras, theorem,

XZ2 = XY2 + YZ2

                  = (32 + 42) cm2

                  = (9 + 16) cm2

                  = 25 cm2

Therefore, XZ = 25cm2

Therefore, XZ = 5 cm


2. Two poles, 15 feet and 35 feet high, are 15 feet apart. Find distance between the tops of the poles.

Solution:

Application on Pythagoras’ Theorem

Let the first pole XY = 15 ft

The second pole PQ = 35 ft.

The distance between two poles YQ = 15 ft.

Draw XR ⊥ PQ.

Now, we have,

PR = PQ - RQ = PQ - XY = (35 - 15) ft = 20 ft.

Also, XR = YQ = 15 ft.

Therefore, distance between tops of the poles = XP 

= XR2+RP2

                                                                   = 152+202 ft

= 225+400 ft

= 625 ft

= 25 ft







9th Grade Math

From Pythagoras’ Theorem to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 10, 25 11:41 AM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More