Pythagoras’ Theorem

The lengths of the sides of a right-angled triangle have a special relationship between them. This relation is widely used in many branches of mathematics, such as mensuration and trigonometry.

Pythagoras’ Theorem: In a right-angled triangle, the square on the hypotenuse is equal to the sum of the squares on the other two sides.

Given: Let XYZ be a triangle in which ∠YXZ = 90°.

YZ is the hypotenuse.

Pythagoras’ Theorem

To prove: XY2 + XZ2 = YZ2.

Construction: Draw XM ⊥YZ.

Therefore, ∠XMY = ∠XMZ = 90°.


Proof:

            Statement

            Reason

1. In ∆XYM and ∆XYZ,

(i) ∠XMY = ∠YXZ = 90°

(ii) ∠XYM = ∠XYZ

1.

(i) Given and by construction

(ii) Common angle

2. Therefore, ∆XYM ∼ ∆ZYX

2. BY AA criterion of similarity

3. Therefore, \(\frac{XY}{YZ}\) = \(\frac{YM}{XY}\)

3. Corresponding sides of similar triangle are proportional

4. Therefore, XY\(^{2}\) = YZ ∙ YM

4. By cross multiplication in statement 3.

5. In ∆XMZ and ∆XYZ,

(i) ∠XMY = ∠YXZ = 90°

(ii) ∠XZM = ∠XZY

5.

(i) Given and by construction

(ii) Common angle

6. Therefore, ∆XMZ ∼ ∆YXZ.

6. BY AA criterion of similarity

7. Therefore, \(\frac{XZ}{YZ}\) = \(\frac{MZ}{XZ}\)

7. Corresponding sides of similar triangle are proportional

8. Therefore, XZ\(^{2}\) = YZ ∙ MZ

8. By cross multiplication in statement 7.

9. Therefore, XY\(^{2}\) + XZ\(^{2}\) = YZ ∙ YM + YZ ∙ MZ

⟹ XY\(^{2}\) + XZ\(^{2}\) = YZ(YM+ MZ)

⟹ XY\(^{2}\) + XZ\(^{2}\) = YZ ∙ YZ

⟹ XY\(^{2}\) + XZ\(^{2}\) = YZ\(^{2}\)

9. By adding statements 4 and 8


Problems on Pythagoras’ Theorem:

1. In ∆XYZ, ∠Y = 90°. If XY = 3 cm and YZ = 4 cm, find XZ.

Problems on Pythagoras’ Theorem

Solution:

By Pythagoras, theorem,

XZ\(^{2}\) = XY\(^{2}\) + YZ\(^{2}\)

                  = (3\(^{2}\) + 4\(^{2}\)) cm\(^{2}\)

                  = (9 + 16) cm\(^{2}\)

                  = 25 cm\(^{2}\)

Therefore, XZ = \(\sqrt{25 cm^{2}}\)

Therefore, XZ = 5 cm


2. Two poles, 15 feet and 35 feet high, are 15 feet apart. Find distance between the tops of the poles.

Solution:

Application on Pythagoras’ Theorem

Let the first pole XY = 15 ft

The second pole PQ = 35 ft.

The distance between two poles YQ = 15 ft.

Draw XR ⊥ PQ.

Now, we have,

PR = PQ - RQ = PQ - XY = (35 - 15) ft = 20 ft.

Also, XR = YQ = 15 ft.

Therefore, distance between tops of the poles = XP 

= \(\sqrt{XR^{2} + RP^{2}}\)

                                                                   = \(\sqrt{15^{2} + 20^{2}}\) ft

= \(\sqrt{225 + 400}\) ft

= \(\sqrt{625}\) ft

= 25 ft







9th Grade Math

From Pythagoras’ Theorem to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 11, 24 09:08 AM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More

  3. Points and Line Segment | Two Points in a Curved Surface | Curve Line

    Dec 09, 24 01:08 AM

    Curved Lines and Straight Line
    We will discuss here about points and line segment. We know when two lines meet we get a point. When two points on a plane surface are joined, a straight line segment is obtained.

    Read More

  4. Solid Shapes | Basic Geometric Shapes | Common Solid Figures | Plane

    Dec 08, 24 11:19 PM

    Solid Shapes
    We will discuss about basic solid shapes. We see a variety of solid objects in our surroundings. Solid objects have one or more shapes like the following. Match the objects with similar shape.

    Read More

  5. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 07, 24 03:38 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More