Subscribe to our YouTube channel for the latest videos, updates, and tips.


Proportions



In math proportions we will mainly learn about introduction or basic concepts of proportion and also about continued proportion.

What is a proportion?

Equality of two ratios is called a proportion. 

We already learnt that — 

Statement of equality of ratios is called proportion. 

Let us consider the two ratios. 

    6 : 10 and 48 : 80 



The ratio 6 : 10 in the simplest form can be written as 3 : 5 and the ratio 48 : 80 in the simplest form can be written as 3 : 5.

    i.e., 6 : 10 = 48 : 80

So, we say that four numbers 6, 10, 48, 80 are in proportion and the numbers are called the terms of the proportion. The symbol used to denote proportion is :: .

We write 6 : 10 :: 48 : 80. It can be read as 6 is to 10 as 48 is to 80.

In general we know, if four quantities a, b, c, d are in proportion, then a : b = c : d

or, a/b = c/d or a × d = b ×c

Here,

    First and fourth terms (a and d) are called extreme terms.

    Second and third terms (b and c) are called mean terms.

    Product of extreme terms = Product of mean terms

    If a : b : : c : d, then d is called the fourth proportional of a, b, c.

Also,

    If a : b :: b : c, then we say that a, b, c are in continued proportion, then c is the third proportional of a and b.

    Also, b is called the mean proportional between a and C.

    In general if a, b, c are in continued proportion then b² = ac or b = √ac.


Worked-out problems on proportions with the detailed explanation showing the step-by-step are discussed below to show how to solve proportions in different examples. 

1. Determine if 8, 10, 12, 15 are in proportion.

Solution:

Product of extreme terms = 8 × 15 = 120 

Product of mean terms = 10 × 12 = 120 

Since, the product of means = product of extremes. 

Therefore, 8, 10, 12, 15 are in proportion. 



2. Check if 6, 12, 24 are in proportion. 

Solution:

Product of first and third terms = 6 × 24 = 144 

Square of the middle terms = (12)² = 12 × 12 = 144

Thus, 12² = 6 × 24 

So, 6, 12, 24 are in proportion and 12 is called the mean proportional between 6 and 24. 




3. Find the fourth Proportional to 12, 18, 20

Solution:

Let the fourth proportional to 12, 18, 20 be x.

Then, 12 : 18 :: 20 : x

⇒ 12 × x = 20 × 18 (Product of Extremes = Product of means)

⇒ x = (20 × 18)/12

⇒ x = 30

Hence, the fourth proportional to 12, 18, 20 is 30.


4. Find the third proportional to 15 and 30.

Solution:

Let the third proportional to 15 and 30 be x.

then 30 × 30 = 15 × x [b² = ac ]

⇒ x = (30 × 30)/15

⇒ x = 60

Therefore, the third proportional to 15 and 30 is 60.


5. The ratio of income to expenditure is 8 : 7. Find the savings if the expenditure is $21,000.

Solution:

Income/Expenditure = 8/7

Therefore, income = $ (8 × 21000)/7 = $24,000

Therefore, Savings = Income - Expenditure

= $(24000 - 21000) = 3000



6. Find the mean proportional between 4 and 9.

Solution:

Let the mean proportional between 4 and 9 be x.

Then, x × x = 4 × 9

⇒ x² = 36

⇒ x = √36

⇒ x = 6 × 6

⇒ x = 6

Therefore, the mean proportional between 4 and 9 is 6.

 Ratios and Proportions

What is a Ratio?

What is a Proportion?


 Ratios and Proportions - Worksheets

Worksheet on Ratios

Worksheet on Proportions




7th Grade Math Problems 

From Proportions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 8 Times Table | Multiplication Table of 8 | Read Eight Times Table

    May 18, 25 04:33 PM

    Printable eight times table
    In 8 times table we will memorize the multiplication table. Printable multiplication table is also available for the homeschoolers. 8 × 0 = 0 8 × 1 = 8 8 × 2 = 16 8 × 3 = 24 8 × 4 = 32 8 × 5 = 40

    Read More

  2. Worksheet on Average | Word Problem on Average | Questions on Average

    May 17, 25 05:37 PM

    In worksheet on average interest we will solve 10 different types of question. Find the average of first 10 prime numbers. The average height of a family of five is 150 cm. If the heights of 4 family

    Read More

  3. How to Find the Average in Math? | What Does Average Mean? |Definition

    May 17, 25 04:04 PM

    Average 2
    Average means a number which is between the largest and the smallest number. Average can be calculated only for similar quantities and not for dissimilar quantities.

    Read More

  4. Problems Based on Average | Word Problems |Calculating Arithmetic Mean

    May 17, 25 03:47 PM

    Here we will learn to solve the three important types of word problems based on average. The questions are mainly based on average or mean, weighted average and average speed.

    Read More

  5. Rounding Decimals | How to Round a Decimal? | Rounding off Decimal

    May 16, 25 11:13 AM

    Round off to Nearest One
    Rounding decimals are frequently used in our daily life mainly for calculating the cost of the items. In mathematics rounding off decimal is a technique used to estimate or to find the approximate

    Read More