Properties of Complex Numbers

We will discuss here about the different properties of complex numbers.

1. When a, b are real numbers and a + ib = 0 then a = 0, b = 0

Proof:

According to the property,

 a + ib = 0 = 0 + i  0,

Therefore, from the definition of equality of two complex numbers we conclude that, x = 0 and y = 0.

 

2. When a, b, c and d are real numbers and a + ib = c + id then a = c and b = d.

Proof:

According to the property,

a + ib = c + id and a, b, c and d are real numbers.

Therefore, from the definition of equality of two complex numbers we conclude that, a = c and b = d.


3. For any three the set complex numbers z\(_{1}\), z\(_{2}\) and z\(_{3}\) satisfies the commutative, associative and distributive laws.

(i) z\(_{1}\) + z\(_{2}\) = z\(_{2}\) + z\(_{1}\) (Commutative law for addition).

(ii) z\(_{1}\) z\(_{2}\) = z\(_{2}\) z\(_{1}\) (Commutative law for multiplication).

(iii) (z\(_{1}\) + z\(_{2}\)) + z\(_{3}\) = z\(_{1}\) + (z\(_{2}\) + z\(_{3}\)) (Associative law for addition)

(iv) (z\(_{1}\)z\(_{2}\))z\(_{3}\) = z\(_{1}\)(z\(_{2}\)z\(_{3}\)) (Associative law for multiplication)

(v) z\(_{1}\)(z\(_{1}\) + z\(_{3}\)) = z\(_{1}\)z\(_{2}\) + z\(_{1}\)z\(_{3}\) (Distributive law).

 

4. The sum of two conjugate complex numbers is real.

Proof:

Let, z = a + ib (a, b are real numbers) be a complex number. Then, conjugate of z is \(\overline{z}\) = a - ib.

Now, z + \(\overline{z}\) = a + ib + a - ib = 2a, which is real.


5. The product of two conjugate complex numbers is real.

Proof:

Let, z = a + ib (a, b are real number) be a complex number. Then, conjugate of z is \(\overline{z}\) = a - ib.

\(\overline{z}\) = (a + ib)(a - ib) = a\(^{2}\) - i\(^{2}\)b\(^{2}\) = a\(^{2}\) + b\(^{2}\), (Since i\(^{2}\) = -1), which is real.


Note: When z = a + ib then |z| = \(\sqrt{a^{2} + b^{2}}\)and, z\(\overline{z}\) = a\(^{2}\) + b\(^{2}\)

Hence, \(\sqrt{z\overline{z}}\) = \(\sqrt{a^{2} + b^{2}}\)

Therefore, |z| = \(\sqrt{z\overline{z}}\)

Thus, modulus of any complex number is equal to the positive square root of the product of the complex number and its conjugate complex number.

 

6. When the sum of two complex numbers is real and the product of two complex numbers is also real then the complex numbers are conjugate to each other.

Proof:

Let, z\(_{1}\) = a + ib and z\(_{2}\) = c + id be two complex quantities (a, b, c, d and real and b ≠ 0, d ≠0).

According to the property,

z\(_{1}\) + z\(_{2}\) = a+ ib + c + id = (a + c) + i(b + d) is real.

Therefore, b + d = 0

⇒ d = -b

And,

z\(_{1}\)z\(_{2}\) = (a + ib)(c + id) = (a + ib)(c +id) = (ac – bd) + i(ad + bc) is real.

Therefore, ad + bc = 0

⇒ -ab + bc = 0, (Since, d = -b)

⇒ b(c - a) = 0

⇒ c = a (Since, b ≠ 0)

Hence, z\(_{2}\) = c + id = a + i(-b) = a - ib = \(\overline{z_{1}}\)

Therefore, we conclude that z\(_{1}\) and z\(_{2}\) are conjugate to each other.


7. |z\(_{1}\) + z\(_{2}\)| ≤ |z\(_{1}\)| + |z\(_{2}\)|, for two complex numbers z\(_{1}\) and z\(_{2}\).






11 and 12 Grade Math 

From Properties of Complex Numbers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Least Common Factor (LCM) | Factorization & Division Method

    Mar 25, 25 02:39 AM

    L.C.M. of 20, 30, 36 by Division Method
    We already familiar with the least common multiple which is the smallest common multiple of the numbers. The least (lowest) common multiple of two or more numbers is exactly divisible by each of the g…

    Read More

  2. 5th Grade Highest Common Factor | HCF | GCD|Prime Factorization Method

    Mar 24, 25 11:58 PM

    Find the H.C.F. of 12, 36, 48
    The highest common factor (H.C.F.) of two or more numbers is the highest or greatest common number or divisor which divides each given number exactly. Hence, it is also called Greatest Common Divisor…

    Read More

  3. 5th Grade Factors and Multiples | Definitions | Solved Examples | Math

    Mar 23, 25 02:39 PM

    Prime Factor of 312
    Here we will discuss how factors and multiples are related to each other in math. A factor of a number is a divisor which divides the dividend exactly. A factor of a number which is a prime number is…

    Read More

  4. Adding 2-Digit Numbers | Add Two Two-Digit Numbers without Carrying

    Mar 23, 25 12:43 PM

    Adding 2-Digit Numbers Using an Abacus
    Here we will learn adding 2-digit numbers without regrouping and start working with easy numbers to get acquainted with the addition of two numbers.

    Read More

  5. Worksheet on 12 Times Table | Printable Multiplication Table | Video

    Mar 23, 25 10:28 AM

    worksheet on multiplication of 12 times table
    Worksheet on 12 times table can be printed out. Homeschoolers can also use these multiplication table sheets to practice at home.

    Read More