Properties of Complex Numbers

We will discuss here about the different properties of complex numbers.

1. When a, b are real numbers and a + ib = 0 then a = 0, b = 0

Proof:

According to the property,

 a + ib = 0 = 0 + i  0,

Therefore, from the definition of equality of two complex numbers we conclude that, x = 0 and y = 0.

 

2. When a, b, c and d are real numbers and a + ib = c + id then a = c and b = d.

Proof:

According to the property,

a + ib = c + id and a, b, c and d are real numbers.

Therefore, from the definition of equality of two complex numbers we conclude that, a = c and b = d.


3. For any three the set complex numbers z\(_{1}\), z\(_{2}\) and z\(_{3}\) satisfies the commutative, associative and distributive laws.

(i) z\(_{1}\) + z\(_{2}\) = z\(_{2}\) + z\(_{1}\) (Commutative law for addition).

(ii) z\(_{1}\) z\(_{2}\) = z\(_{2}\) z\(_{1}\) (Commutative law for multiplication).

(iii) (z\(_{1}\) + z\(_{2}\)) + z\(_{3}\) = z\(_{1}\) + (z\(_{2}\) + z\(_{3}\)) (Associative law for addition)

(iv) (z\(_{1}\)z\(_{2}\))z\(_{3}\) = z\(_{1}\)(z\(_{2}\)z\(_{3}\)) (Associative law for multiplication)

(v) z\(_{1}\)(z\(_{1}\) + z\(_{3}\)) = z\(_{1}\)z\(_{2}\) + z\(_{1}\)z\(_{3}\) (Distributive law).

 

4. The sum of two conjugate complex numbers is real.

Proof:

Let, z = a + ib (a, b are real numbers) be a complex number. Then, conjugate of z is \(\overline{z}\) = a - ib.

Now, z + \(\overline{z}\) = a + ib + a - ib = 2a, which is real.


5. The product of two conjugate complex numbers is real.

Proof:

Let, z = a + ib (a, b are real number) be a complex number. Then, conjugate of z is \(\overline{z}\) = a - ib.

\(\overline{z}\) = (a + ib)(a - ib) = a\(^{2}\) - i\(^{2}\)b\(^{2}\) = a\(^{2}\) + b\(^{2}\), (Since i\(^{2}\) = -1), which is real.


Note: When z = a + ib then |z| = \(\sqrt{a^{2} + b^{2}}\)and, z\(\overline{z}\) = a\(^{2}\) + b\(^{2}\)

Hence, \(\sqrt{z\overline{z}}\) = \(\sqrt{a^{2} + b^{2}}\)

Therefore, |z| = \(\sqrt{z\overline{z}}\)

Thus, modulus of any complex number is equal to the positive square root of the product of the complex number and its conjugate complex number.

 

6. When the sum of two complex numbers is real and the product of two complex numbers is also real then the complex numbers are conjugate to each other.

Proof:

Let, z\(_{1}\) = a + ib and z\(_{2}\) = c + id be two complex quantities (a, b, c, d and real and b ≠ 0, d ≠0).

According to the property,

z\(_{1}\) + z\(_{2}\) = a+ ib + c + id = (a + c) + i(b + d) is real.

Therefore, b + d = 0

⇒ d = -b

And,

z\(_{1}\)z\(_{2}\) = (a + ib)(c + id) = (a + ib)(c +id) = (ac – bd) + i(ad + bc) is real.

Therefore, ad + bc = 0

⇒ -ab + bc = 0, (Since, d = -b)

⇒ b(c - a) = 0

⇒ c = a (Since, b ≠ 0)

Hence, z\(_{2}\) = c + id = a + i(-b) = a - ib = \(\overline{z_{1}}\)

Therefore, we conclude that z\(_{1}\) and z\(_{2}\) are conjugate to each other.


7. |z\(_{1}\) + z\(_{2}\)| ≤ |z\(_{1}\)| + |z\(_{2}\)|, for two complex numbers z\(_{1}\) and z\(_{2}\).






11 and 12 Grade Math 

From Properties of Complex Numbers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 14, 24 02:12 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 14, 24 12:25 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  3. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 13, 24 08:43 AM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  4. Patterns in Math | Missing Number | Counting Numbers | Worksheets

    Dec 13, 24 12:31 AM

    Finding patterns in math is very important to understand the sequence in the series. We need to find the exact missing number that from the group of numbers. The counting numbers may be counting

    Read More

  5. Concept of Pattern | Similar Patterns in Mathematics | Similar Pattern

    Dec 12, 24 11:22 PM

    Patterns in Necklace
    Concept of pattern will help us to learn the basic number patterns and table patterns. Animals such as all cows, all lions, all dogs and all other animals have dissimilar features. All mangoes have si…

    Read More