Problems on Ratios in Simplest Form

Here we will learn how to find the problems on ratios in simplest form. In order to express a ratio in the simplest form, we find the HCF of the terms and divide each term by the HCF.

We know, a ratio must always be expressed in its lowest terms or simplest form. A ratio is said to be in the simplest form if the first term or first quantity (antecedent) and the second term or second quantity (consequent) have no common factor other than 1.

Find the ratio of each of the following in simplest form:

(i) 30 and 15

= 30 : 15

First we need to convert the given ratio into fraction,

= 30/15, [divide both the numerator and denominator by 15 since, the h.c.f. of 30 and 15 is 15]

= 2/1

= 2 : 1

(ii) 60 and 48

= 60 : 48

First we need to convert the given ratio into fraction,

= 60/48 (divide both the numerator and denominator by 12 since, the h.c.f. of 60 and 48 is 12)

= 5/4

= 5 : 4


(iii) 8 kg and 10 kg

= 8 kg : 10 kg

= (8 kg)/(10 kg), [divide both the numerator and denominator by 2 since, the h.c.f. of 8 and 10 is 2]

= 4/5

= 4 : 5


Now, we will solve different types of problems on ratios in simplest form where both the quantities in different units. So, before finding the required ratio, we shall have to express both the quantities in the same units.

(iv) 3 kg to 2000 gm

= 3 kg : 2000 gm

= (3 kg)/(2000 gm)

We know, 1 kg = 1000 gm, 3 kg = 3 × 1000 gm = 3000 gm,

= (3000 gm)/(2000 gm), [divide both the numerator and denominator by 1000 since, the h.c.f. of 3000 and 2000 is 1000]

= 3/2 

= 3 : 2


(v) 750 gm to 2 kg 250 gm

= 750 gm : 2 kg 250 gm

= (750 g)/(2 kg 250 gm)

We know, 1 kg = 1000 gm, 2 kg = 2 × 1000 gm = 2000 gm,

= (750 gm)/(2000 gm + 250 gm)

= 750/2250, [divide both the numerator and denominator by 750 since, the h.c.f. of 750 and 2250 is 750]

= 1/3

= 1 : 3

(vi) 3 hours to 75 minutes

= 3 hours : 75 minutes

= (3 hours)/(75 minutes)

We know, 1 hour = 60 minute, 3 hours = 3 × 60 minutes = 180 minutes,

= (180 minutes)/(75 minutes)

= 180/75

= 12/5

= 12 : 5


(vii) 2 hours 15 minutes to 45 minutes

= 2 hours 15 minutes : 45 minutes

= (2 hours 15 minutes)/(45 minutes)

We know, 1 hour = 60 minute, 2 hours = 2 × 60 minutes = 120 minutes,

= (120 + 15 minutes)/(45 minutes)

= 135/45

= 3/1

= 3 : 1


(viii) 10 months and 2 years

= 10 months : 2 years

= (10 months)/(2 years)

We know, 1 year = 12 months, 2 years = 12 × 2 months = 24 months,

= (10 months)/(24 months)

= 10/24

= 5/12

= 5 : 12

Thus, from the above problems on ratios in simplest form we can understand that the two quantities can be compared when they are of the same kind. We can compare the ages of two persons, but we cannot compare the age of one person with, say, health or wealth of another person. Similarly, length and width can be compared becomes both the quantities are measures of length. The measurements must also be in same unit for comparison.







6th Grade Page

From Problems on Ratios in Simplest Form to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 11, 25 02:14 PM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More