Problems on Median of Ungrouped Data

Here we will learn how to solve the different types of problems on median of ungrouped data.

1. The heights (in cm) of 11 players of a team are as follows:

      160, 158, 158, 159, 160, 160, 162, 165, 166, 167, 170.

Solution:

Arranging the variates in the ascending order, we get

      157, 158, 158, 159, 160, 160, 162, 165, 166, 167, 170.

The number of variates = 11, which is odd.

Therefore, median = \(\frac{11 + 1}{2}\)th variate = 6th variate = 160.

2. Find the median of the first five odd integers. If the sixth odd integer is also included, find the difference of medians in the two cases.

Solution:

Writing the first five odd integers in ascending order, we get

                                 1, 3, 5, 7, 9.

The number of variates = 5, which is odd.

Therefore, median = \(\frac{5 + 1}{2}\)th variate = 3th variate = 5.

When the sixth integer is included, we have (in ascending order)

                               1, 3, 5, 7, 9, 11.

Now, the number of variates = 6, which is even.

Therefore, median  = mean of \(\frac{6}{2}\)th and (\(\frac{6}{2}\) + 1)th variates

                            = Mean of 3rd and 4th variates

                            = Mean of 5 and 7 = \(\frac{5 + 7}{2}\) = 6.

Therefore, the difference of medians in the two cases = 6 - 5 = 1.


3. If the median of 17, 13, 10, 15, x happens to be the integer x then find x.

Solution:

There are five (odd) variates. So, \(\frac{5 + 1}{2}\)th variate, i.e., 3rd variate when written in ascending order will the median x.

So, the variates in ascending order should be 10, 13, x, 15, 17.

Therefore, 13 < x < 15.

But x is an integer. So, x = 14.


4. The marks obtained by 20 students in a class test are given below.

Marks Obtained

6

7

8

9

10

Number of Students

5

8

4

2

1

Find the median of marks obtained by the students.

Solution:

Arranging the variates in ascending order, we get

        6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 10.

The number of variates = 20, which is even.

Therefore, median = mean of \(\frac{20}{2}\)th and (\(\frac{20}{2}\) + 1)th variate

                            = mean of 10th and 11th variate

                            = mean of 7 and 7

                            = \(\frac{7 + 7}{2}\)

                            = 7.



9th Grade Math

From Problems on Median of Ungrouped Data to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Fraction in Lowest Terms |Reducing Fractions|Fraction in Simplest Form

    Feb 28, 24 04:07 PM

    Fraction 8/16
    There are two methods to reduce a given fraction to its simplest form, viz., H.C.F. Method and Prime Factorization Method. If numerator and denominator of a fraction have no common factor other than 1…

    Read More

  2. Equivalent Fractions | Fractions |Reduced to the Lowest Term |Examples

    Feb 28, 24 01:43 PM

    Equivalent Fractions
    The fractions having the same value are called equivalent fractions. Their numerator and denominator can be different but, they represent the same part of a whole. We can see the shade portion with re…

    Read More

  3. Fraction as a Part of Collection | Pictures of Fraction | Fractional

    Feb 27, 24 02:43 PM

    Pictures of Fraction
    How to find fraction as a part of collection? Let there be 14 rectangles forming a box or rectangle. Thus, it can be said that there is a collection of 14 rectangles, 2 rectangles in each row. If it i…

    Read More

  4. Fraction of a Whole Numbers | Fractional Number |Examples with Picture

    Feb 24, 24 04:11 PM

    A Collection of Apples
    Fraction of a whole numbers are explained here with 4 following examples. There are three shapes: (a) circle-shape (b) rectangle-shape and (c) square-shape. Each one is divided into 4 equal parts. One…

    Read More

  5. Identification of the Parts of a Fraction | Fractional Numbers | Parts

    Feb 24, 24 04:10 PM

    Fractional Parts
    We will discuss here about the identification of the parts of a fraction. We know fraction means part of something. Fraction tells us, into how many parts a whole has been

    Read More