Problems on Median of Ungrouped Data

Here we will learn how to solve the different types of problems on median of ungrouped data.

1. The heights (in cm) of 11 players of a team are as follows:

      160, 158, 158, 159, 160, 160, 162, 165, 166, 167, 170.

Solution:

Arranging the variates in the ascending order, we get

      157, 158, 158, 159, 160, 160, 162, 165, 166, 167, 170.

The number of variates = 11, which is odd.

Therefore, median = \(\frac{11 + 1}{2}\)th variate = 6th variate = 160.

2. Find the median of the first five odd integers. If the sixth odd integer is also included, find the difference of medians in the two cases.

Solution:

Writing the first five odd integers in ascending order, we get

                                 1, 3, 5, 7, 9.

The number of variates = 5, which is odd.

Therefore, median = \(\frac{5 + 1}{2}\)th variate = 3th variate = 5.

When the sixth integer is included, we have (in ascending order)

                               1, 3, 5, 7, 9, 11.

Now, the number of variates = 6, which is even.

Therefore, median  = mean of \(\frac{6}{2}\)th and (\(\frac{6}{2}\) + 1)th variates

                            = Mean of 3rd and 4th variates

                            = Mean of 5 and 7 = \(\frac{5 + 7}{2}\) = 6.

Therefore, the difference of medians in the two cases = 6 - 5 = 1.


3. If the median of 17, 13, 10, 15, x happens to be the integer x then find x.

Solution:

There are five (odd) variates. So, \(\frac{5 + 1}{2}\)th variate, i.e., 3rd variate when written in ascending order will the median x.

So, the variates in ascending order should be 10, 13, x, 15, 17.

Therefore, 13 < x < 15.

But x is an integer. So, x = 14.


4. The marks obtained by 20 students in a class test are given below.

Marks Obtained

6

7

8

9

10

Number of Students

5

8

4

2

1

Find the median of marks obtained by the students.

Solution:

Arranging the variates in ascending order, we get

        6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 10.

The number of variates = 20, which is even.

Therefore, median = mean of \(\frac{20}{2}\)th and (\(\frac{20}{2}\) + 1)th variate

                            = mean of 10th and 11th variate

                            = mean of 7 and 7

                            = \(\frac{7 + 7}{2}\)

                            = 7.



9th Grade Math

From Problems on Median of Ungrouped Data to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Mixed Addition and Subtraction | Questions on Addition

    Jan 12, 25 02:14 PM

    In worksheet on mixed addition and subtraction the questions involve both addition and subtraction together; all grade students can practice the questions on addition and subtraction together.

    Read More

  2. Estimating Sums and Differences | Estimations | Practical Calculations

    Jan 12, 25 02:02 PM

    Estimating Difference
    For estimating sums and differences in the number we use the rounded numbers for estimations to its nearest tens, hundred, and thousand. In many practical calculations, only an approximation is requir…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jan 12, 25 01:36 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Checking Subtraction using Addition |Use Addition to Check Subtraction

    Jan 12, 25 01:13 PM

    Checking Subtraction using Addition Worksheet
    We can check subtraction by adding the difference to the smaller number. Since the sum of difference and smaller number is equal to the larger number, subtraction is correct.

    Read More

  5. Worksheet on Subtraction of 4-Digit Numbers|Subtracting 4-Digit Number

    Jan 12, 25 09:04 AM

    Worksheet on Subtraction of 4-Digit Numbers
    Practice the questions given in the worksheet on subtraction of 4-digit numbers. Here we will subtract two 4-digit numbers (without borrowing and with borrowing) to find the difference between them.

    Read More