Loading [MathJax]/jax/output/HTML-CSS/jax.js

Problems on Median of Raw Data

Median is another measure of central tendency of a distribution. We will solve different types of problems on Median of Raw Data.


Solved Examples on Median of Raw Data:

1. The height (in cm) of 11 players of a team are as follows:

160, 158, 158, 159, 160, 160, 162, 165, 166, 167, 170.

Find the median height of the team.

Solution:

Arrange the variates in the ascending order, we get

157, 158, 158, 159, 160, 160, 162, 165, 166, 167, 170.

The number of variates = 11, which is odd.

Therefore, median = 11+12th variate  

                           = 122th variate  

                           = 6th variate  

                           = 160.


2. Find the median of the first five odd integers. If the sixth odd integer is also included, find the difference of medians in the two cases.

Solution:

Writing the first five odd integers in ascending order, we get

1, 3, 5, 7, 9.

The number of variates = 5, which is odd.

Therefore, median = 5+12th variate  

                           = 62th variate  

                           = 3th variate  

                           = 5.

When the sixth integer is included, we have (in ascending order)

1, 3, 5, 7, 9, 11.

Now, the number of variates = 6, which is even.

Therefore, median = mean of the 62th and (62 + 1)th variate

                           = mean of the 3th and 4th variates

                           = mean of 5 and 7

                           = (5+72

                           = (122

                           = 6.

Therefore, the difference of medians in the two cases = 6 – 5 = 1.

 

3. If the median of 17, 13, 10, 15, x happens to be the integer x then find x.

Solution:

There are are five (odd) variates.

So, 5+12th variate, i.e., 3rd variate when written in the ascending order will the medina x.

So, the variates in ascending order should be 10, 13, x, 15, 17.

Therefore, 13 < x < 15.

But x is an integer.

So, x = 14.

 

 

4. Find the median of the collection of the first seven whole numbers. If 9 is also included in the collection, find the difference of the medians in the two cases.

Solution:

The first seven whole numbers arranged in ascending order are

0, 1, 2, 3, 4, 5, 6.

Here, the total number of variates = 7, which is odd.

Therefore, 7+12th, i.e., 4th variate is the median.

So, median = 3.

When 9 is included in the collection, the variates in the ascending order are

0, 1, 2, 3, 4, 5, 6, 9.

Here the number of variates = 8, which is even.

Therefore, median = mean of the 82th variate and the (82 + 1)th variate

                            = Mean of the 4th variate and the 5th variate

                            = mean of 3 and 4

                            = 3+42

                            = 72

                            = 3.5.

Therefore, the difference of medians = 3.5 – 3 = 0.5

 

5. If the numbers 25, 22, 21, x + 6, x + 4, 9, 8, 6 are in order and their median is 16, find the value of x.

Solution:

Here, the number of variates = 8 (in descending order).

8 is even.

Therefore, median = mean of the 82th variate and the (82 + 1)th variate

                           = Mean of the 4th variate and the 5th variate

                           = Mean of x + 6 and x + 4

                           = (x+6)+(x+4)2

                           = x+6+x+42

                           = 2x+102

                           = 2(x+5)2

                           = x + 5.

According to the problem,

x + 5 = 16

⟹ x = 16 - 5

⟹ x = 11.

Problems on Median of Raw Data


6. The marks obtained by 20 students in a class test are given below.


Marks Obtained

6

7

8

9

10

Number of Students

5

8

4

2

1


Find the median of marks obtained by the students.

Solution:

Arranging the variates in ascending order, we get

6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 10.

The number of variates = 20, which is even.

Therefore, median = mean of 202th and (202 + 1)th variate

                            = mean of the 10th and 11th variates

                            = mean of 7 and7

                            = (7+72

                            = (142

                            = 7.






9th Grade Math

From Problems on Median of Raw Data to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 11, 25 02:14 PM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More