Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Problems on Factorization of Expressions of the Form a\(^{2}\) - b\(^{2}\)

Here we will solve different types of Problems on Factorization of expressions of the form a2 – b2.

1. Resolve into factors: 49a2 – 81b2

Solution:

Given expression = 49a2 – 81b2

                         = (7a)2 – (9b)2

                         = (7a + 9b)(7a – 9b).

2. Factorize: (x + y)2 – 4(x – y)2

Solution:

Given expression = (x + y)2 – 4(x – y)2

                         = (x + y)2 – {2(x – y)}2

                         = {(x + y) + 2(x – y)}{(x + y) - 2(x – y)}

                         = (x + y + 2x – 2y)(x + y - 2x + 2y)

                         = (3x – y)(3y - x).


3. Factorize the expression (x2 + y2 – z2)2 – 4x2y2 of the form a2 – b2.

Solution:

Given expression = (x\(^{2}\) + y\(^{2}\) – z\(^{2}\))\(^{2}\) – 4x\(^{2}\)y\(^{2}\)

                         = (x\(^{2}\) + y\(^{2}\) – z\(^{2}\))\(^{2}\) – (2xy)\(^{2}\)

                         = (x\(^{2}\) + y\(^{2}\) – z\(^{2}\) + 2xy)(x\(^{2}\) + y\(^{2}\) – z\(^{2}\) – 2xy)

                         = (x\(^{2}\) + 2xy + y\(^{2}\) - z\(^{2}\))(x\(^{2}\) – 2xy + y\(^{2}\) – z\(^{2}\))

                         = {(x\(^{2}\) + 2xy + y\(^{2}\)) - z\(^{2}\)}{(x\(^{2}\) - 2xy + y\(^{2}\)) – z\(^{2}\)}

                         = {(x + y)\(^{2}\) - z\(^{2}\)}{(x -  y)\(^{2}\) - z\(^{2}\)}

                         = (x + y + z)(x + y - z)(x -  y + z) (x -  y - z).

 

4. Factorize 2x\(^{2}\) - 18 of the form a\(^{2}\) – b\(^{2}\).

Solution:

Given expression = 2x\(^{2}\) - 18

                          = 2(x\(^{2}\) – 9)

                          = 2(x\(^{2}\) – 3\(^{2}\))

                          = 2(x + 3)(x - 3)

 

5. Factorize: 25(a + b)\(^{2}\) – (a – b)\(^{2}\)

Solution:

Given expression = 25(a + b)\(^{2}\) – (a – b)\(^{2}\)

                          = {5(a + b)}\(^{2}\) – (a – b)\(^{2}\)

                          = {5(a + b) + (a – b)}{5(a + b) – (a – b)}

                          = (5a + 5b + a – b)(5a + 5b - a + b)

                          = (6a + 4b)(4a + 6b)

                          = {2(3a + 2b)}{2(2a + 3b)}

                          = 4(3a + 2b)(2a + 3b)


6. Factorize the expression 9(x + y)\(^{2}\) – x\(^{2}\) of the form a\(^{2}\) – b\(^{2}\).

Solution:

Given expression = 9(x + y)\(^{2}\) – x\(^{2}\)

                         = {3(x + y)}\(^{2}\) – x\(^{2}\)

                         = {3(x + y) + x}{3(x + y) - x}

                         = (3x + 3y + x)(3x + 3y - x)

                         = (4x + 3y)(2x + 3y)

 

 

7. Factorize the expression 9x\(^{2}\) – 4(y + 2x)\(^{2}\) of the form a\(^{2}\) – b\(^{2}\).

Solution:

Given expression = 9x\(^{2}\) – 4(y + 2x)\(^{2}\)

                         = (3x)\(^{2}\) – {2(y + 2x)}\(^{2}\)

                         = {3x + 2(y + 2x)}{3x - 2(y + 2x)}

                         = (3x + 2y + 4x)(3x - 2y - 4x)

                         = (7x + 2y)(-x - 2y)

                         = (7x + 2y){-(x + 2y)}

                         = -(7x + 2y)(x + 2y)

 

8. Factorize: 1 – (b – c)\(^{2}\)

Solution:

Given expression = 1 – (b – c)\(^{2}\)

                         = 1\(^{2}\) – (b – c)\(^{2}\)

                         = {1 + (b – c)}{1 - (b – c)}

                         = (1 + b – c)(1 - b + c)


9. Factorize: 81a\(^{4}\) – 16b\(^{4}\)

Solution:

Given expression = 81a\(^{4}\) – 16b\(^{4}\)

                          = (9a\(^{2}\))\(^{2}\) – (4b\(^{2}\))\(^{2}\)

                          = (9a\(^{2}\) + 4b\(^{2}\))(9a\(^{2}\) - 4b\(^{2}\))

                          = (9a\(^{2}\) + 4b\(^{2}\)){(3a)\(^{2}\) - (2b)\(^{2}\)}

                          = (9a\(^{2}\) + 4b\(^{2}\))(3a + 2b)(3a - 2b)


10. Factorize: 16ax\(^{4}\) – ay\(^{4}\)

Solution:

Given expression = 16ax\(^{4}\) – ay\(^{4}\)

                         = a(16x\(^{4}\) – y\(^{4}\))

                         = a{(4x\(^{2}\))\(^{2}\) – (y\(^{2}\))\(^{2}\)}

                         = a(4x\(^{2}\) + y\(^{2}\))(4x\(^{2}\) - y\(^{2}\))

                         = a(4x\(^{2}\) + y\(^{2}\)){(2x)\(^{2}\) - y\(^{2}\)}

                         = a(4x\(^{2}\) + y\(^{2}\))(2x + y)(2x – y)


11. Factorize: a\(^{4}\) – 16b\(^{4}\)

Solution:

Given expression = a\(^{4}\) – 16b\(^{4}\)

                         = (a\(^{2}\))\(^{2}\) – (4b\(^{2}\))\(^{2}\)

                         = (a\(^{2}\) + 4b\(^{2}\))(a\(^{2}\) - 4b\(^{2}\))

                         = (a^2 + 4b\(^{2}\)){a\(^{2}\) – (2b)\(^{2}\)}

                         = (a^2 + 4b\(^{2}\))(a + 2b)(a - 2b)








9th Grade Math

From Problems on Factorization of Expressions of the Form a^2 – b^2 to HOME PAGE


Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.