Perimeter and Area of Trapezium

Here we will discuss about the perimeter and area of a trapezium and some of its geometrical properties.

Perimeter and Area of Trapezium

Area of a trapezium (A) = \(\frac{1}{2}\) (sum of parallel sides) × height

                                   = \(\frac{1}{2}\) (a + b) × h

Perimeter of a trapezium (P) = sum of parallel sides + sum of oblique sides

Some geometrical properties of a trapezium:

Geometrical Properties of a Trapezium

In a trapezium PQRS in which sides PQ and RS are parallel, and X and Y are respectively the middle points of PS and QR,

XY = \(\frac{1}{2}\) (PQ + SR)

Area of ∆QSR = area of ∆PSR

Area of ∆PQS = area of ∆PQR


Solved example problem on finding the perimeter and area of a trapezium:

1. In the trapezium PQRS, PQ ∥ RS and ∠PSR = 90°. If PQ = 15 cm, SR = 40 cm and the diagonal PR = 41 cm then find the area of a trapezium.

Find the Area of a Trapezium

Solution:

In the right-angled ∆PSR,

PR\(^{2}\) = PS\(^{2}\) + SR\(^{2}\)

Therefore, 41\(^{2}\) cm \(^{2}\) = PS\(^{2}\) + 40\(^{2}\) cm\(^{2}\)

⟹ PS\(^{2}\) = (41\(^{2}\) - 40\(^{2}\)) cm\(^{2}\)

                      = (41 + 40) (41 – 40) cm\(^{2}\)

                      = 81 × 1 cm\(^{2}\)

                      = 81 cm\(^{2}\)

Therefore, PS = 9 cm

Therefore, area of the trapezium PQRS = \(\frac{1}{2}\) (sum of the parallel sides) × height

                                                         = \(\frac{1}{2}\) (PQ + SR) × PS

                                                         = \(\frac{1}{2}\) (15 + 40) × 9 cm\(^{2}\)

                                                         = \(\frac{1}{2}\) × 55 × 9 cm\(^{2}\)

                                                         = \(\frac{495}{2}\) cm\(^{2}\)

                                                         = 247.5 cm\(^{2}\)

 

2. The parallel sides of a trapezium measure 46 cm and 25 cm. Its other sides are 20 cm and 13 cm. Find the distance between the parallel sides and the area of the trapezium.

Distance between the Parallel Sides of the Trapezium

Solution:

PQRS is a trapezium in which RS ∥PQ, RS = 25 cm and PQ = 46 cm.

Also, PS = 20 cm and QR = 13 cm

Draw RT ∥ SP and RU ⊥ PQ

Then RSPT is a parallelogram.

So, RT = SP = 20 cm and PT = SR = 25 cm

Therefore, TQ = PQ – PT = 46 cm – 25 cm = 21 cm

Area of the ∆RTQ = \(\sqrt{s(s - a)(s - b)(s - c)}\)

where s = \(\frac{\textrm{RT + TQ + QR}}{2}\)

               = \(\frac{\textrm{20 + 21 + 13}}{2}\) cm

               = 27 cm

Now, plug the values in \(\sqrt{s(s - a)(s - b)(s - c)}\).

                       = \(\sqrt{27(27 - 20)(27 - 21)(27 - 13)}\) cm\(^{2}\)

                       = \(\sqrt{27 ∙ 7 ∙ 6 ∙ 14}\) cm\(^{2}\)

                       = \(\sqrt{3 ∙ 3 ∙ 3 ∙ 7 ∙ 3 ∙ 2 ∙ 7 ∙ 2}\) cm\(^{2}\)

                       = \(\sqrt{3^{2} ∙ 3^{2} ∙ 7^{2} ∙ 2^{2}}\) cm\(^{2}\)

                       = 3 ∙ 3 ∙ 7 ∙ 2 cm\(^{2}\)

                       = 126 cm\(^{2}\)

Also, the area of the ∆RTQ = \(\frac{1}{2}\) TQ × RU = \(\frac{1}{2}\) × 21 cm × RU cm\(^{2}\)

Therefore, 126 cm\(^{2}\) = \(\frac{1}{2}\) × 21 cm × RU

or, RU = \(\frac{126 × 2}{21}\) cm

or, RU = 12 cm

Therefore, the distance between the parallel sides = 12 cm

Therefore, area of the trapezium PQRS = \(\frac{1}{2}\) × (SR + PQ) × RU

                                                        = \(\frac{1}{2}\) × (25 + 46) × 12 cm\(^{2}\)

                                                        = \(\frac{1}{2}\) × (25 + 46) × 12 cm\(^{2}\)

                                                        = \(\frac{1}{2}\) × 71 × 12 cm\(^{2}\)

                                                        = \(\frac{852}{2}\) cm\(^{2}\)

                                                        = 426 cm\(^{2}\)


Application on Perimeter and Area of Trapezium:

3. The shape of the cross section of a canal is a trapezium. If the canal is 10 m wide on the top and 6 m wide at the bottom, and the area of its cross section is 72 m2 then find the depth of the canal.

Solution: 

The cross section is the trapezium PQRS in which PQ ∥ RS. Here PQ = 10 m, RS = 6 m, and area of the trapezium PQRS = 72 m2.

Application on Perimeter and Area of Trapezium

Let d be the depth of the canal.

Then, area of the trapezium PQRS = \(\frac{1}{2}\)(PQ + RS)d

⟹ 72 m= \(\frac{1}{2}\)(10 + 6) × d

⟹ d = \(\frac{72 × 2}{16}\) m = 9 m

Therefore, the depth of the canal = 9 m.




9th Grade Math

From Perimeter and Area of Trapezium to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on 10 Times Table | Printable Multiplication Table | Video

    Mar 21, 25 03:46 PM

    worksheet on multiplication of 10 times table
    Worksheet on 10 times table can be printed out. Homeschoolers can also use these multiplication table sheets to practice at home.

    Read More

  2. 5th Grade Prime and Composite Numbers | Definitions | Examples | Math

    Mar 21, 25 12:18 AM

    5th grade prime and composite numbers

    Read More

  3. 14 Times Table | Read and Write Multiplication Table of 14| Video

    Mar 20, 25 04:03 PM

    14 Times Table
    In 14 times table we will learn how to read and write multiplication table of 14. We read fourteen times table as:One time fourteen is 14 Two times fourteen are 28 Three times fourteen are 42

    Read More

  4. 5th Grade Test of Divisibility Rules | Divisibility Rules From 2 to 12

    Mar 20, 25 04:00 PM

    In 5th grade test of divisibility rules we will learn about the exact divisibility of a number by the numbers from 2 to 12. The digit in the ones place should be 2, 4, 6, 8 or 0.

    Read More

  5. 5th Grade Even and Odd Numbers | Definitions | Examples

    Mar 20, 25 02:45 AM

    Numbers which are exactly divisible by 2 are even numbers. For example. 2,4,6,8,20,48,88, etc. are even numbers. They are multiples of 2. Numbers which are not exactly divisible by 2 are odd numbers…

    Read More