Processing math: 100%

Perimeter and Area of a Triangle

Here we will discuss about the perimeter and area of a triangle and some of its geometrical properties.

Perimeter, Area and Altitude of a Triangle:

Perimeter, Area and Altitude of a Triangle

Perimeter of a triangle (P) = Sum of the sides = a + b + c

Semiperimeter of a triangle (s) = 12(a + b + c)

Area of a triangle (A) = 12 × base × altitude = 12ah

Here any side can be taken as base; the length of the perpendicular from the corresponding vertex to this side is the altitude.

Area = s(s - a)(s - b)(s - c)  (Heron’s formula)

Altitude (h) = area12×base = 2a


Solved Example on Finding the Perimeter, Semiperimeter and Area

 of a Triangle: 

The sides of a triangle are 4 cm, 5 cm and 7 cm. Find its perimeter, semiperimeter and area.

Solution:

Perimeter of a triangle (P) = Sum of the sides

                                      = a + b + c

                                      = 4 cm + 5 cm + 7 cm

                                      = (4 + 5 + 7) cm

                                      = 16 cm


Semiperimeter of a triangle (s) = 12(a + b + c)

                                             = 12(4 cm + 5 cm + 7 cm)

                                             = 12(4 + 5 + 7) cm

                                             = 12 × 16 cm

                                             = 8 cm

Area of a triangle = s(s - a)(s - b)(s - c) 

                          = 8(8 - 4)(8 - 5)(8 - 7) cm2

                          = 8 × 4 × 3 × 1 cm2

                          = 96 cm2

                          = 16×6 cm2

                          = 46 cm2

                          = 4 × 2.45 cm2

                          = 9.8 cm2


Perimeter, Area and Altitude of an Equilateral Triangle:

Perimeter, Area and Altitude of an Equilateral Triangle

Perimeter of an equilateral triangle (P) = 3 × side = 3a

Area of an equilateral triangle (A) = 34 × (side)2 = 34 a2

Altitude of an equilateral triangle (h) = 34 a


Trigonometric formula for area of a triangle:

Trigonometric Formula for Area of a Triangle

Area of ∆ABC = 12 × ca sin B

                    = 12 × ab sin C

                    = 12 × bc sin A

(since, ∆ = 12 ah = 12 ca ∙ hc = 12 ca sin B, etc.)


Solved Example on Finding the Area of a Triangle: 

In a ∆ABC, BC = 6 cm, AB = 4 cm and ∠ABC = 60°. Find its area.

Solution:

Area of ∆ABC = 12 ac sin B = 12 × 6 × 4 sin 60° cm2

                    = 12 × 6 × 4 × 32 cm2

                    = 6√3 cm2

                    = 6 × 1.73 cm2

                    = 10.38 cm2


Some geometrical properties of an isosceles triangle:

Geometrical Properties of an Isosceles Triangle

In the isosceles ∆PQR, PQ = PR, QR is the base, and PT is the altitude.

Then, ∠PTR = 90°, QT = TR, PT2 + TR2 = PR2 (by Pythagoras’ theorem)

 ∠PQR = ∠PRQ, ∠QPT = ∠RPT.


Some geometrical properties of a right-angled triangle:

In the right-angled ∆PQR, ∠PQR = 90°; PQ, QR are the sides (forming the right angle) and PR is the hypotenuse.

Geometrical Properties of a Right-angled Triangle

Then, PQ ⊥ QR (therefore, if QR is the base, PQ is the altitude).

PQ2 + QR2 = PR2 (by Pythagoras’ theorem)

Area of the ∆PQR = 12 ∙ PQ ∙ QR

⟹ PQ ∙ QR = 2 × area of the ∆PQR.

Again, area of the ∆PQR = 12 ∙ QT ∙ PR

⟹ QT ∙ PR = 2 × area of the ∆PQR.

Therefore, PQ ∙ QR = QT ∙ PR = 2 × Area of the ∆PQR.


Solved Examples on Perimeter and Area of a Triangle:

1. Find the perimeter of an equilateral triangle whose area is equal to that of a triangle with sides 21 cm, 16 cm and 13 cm.

Solution:

Let a side of the equilateral triangle = x.

Then, its area = 34 x2

Now, the area of the other triangle = s(s - a)(s - b)(s - c) 

Here, s = 12 (a + b + c)

           = 12 (21 + 16 + 13) cm

           = 12 50 cm

           = 25 cm

Therefore, area of the other triangle = 25(25 - 21)(25 - 16)(25 - 13) cm2

                                                     = 25 ∙ 4 ∙ 9 ∙ 12 cm2

                                                     = 603 cm2

According to the question, 34 x2 = 603 cm2

⟹ x2 = 240 cm2

Therefore, x = 4√15 cm


2. PQR is an isosceles triangle whose equal sides PQ and PR are 10 cm each, and the base QR measures 8 cm. PM is the perpendicular from P to QR and X is a point on PM such that ∠QXR = 90°. Find the area of the shaded portion.

Solved Examples on Perimeter and Area of a Triangle

Solution:

Since PQR is an isosceles triangle and PM ⊥ QR, QR is bisected at M.

Therefore, QM = MR = 12 QR = 12 × 8 cm = 4 cm

Now, PQ2 = PM2 + QM2 (by Pythagoras’ theorem)

Therefore, 102 cm2 = PM2 + 42 cm2

or, PM2 = 102 cm2 - 42 cm2

                       = 100 cm2 - 16 cm2

                       = (100 - 16) cm2

                       = 84 cm2

Therefore, PM2 = 2√21 cm

Therefore, area of the ∆PQR = 12 × base × altitude

                                         = 12 × QR × PM

                                         = (12 × 8 × 2√21) cm2

                                         = 8√21) cm2

From geometry, ∆XMQ ≅ ∆XMR (SAS criterion)

We get, XQ =XR = a (say)

Therefore, from the right-angled ∆QXR, a2 + a2 = QR2

or, 2a2 = 82 cm2

or, 2a2 = 64 cm2

or, a2 = 32 cm2

Therefore, a = 4√2 cm

Again, area of the ∆XQR = 12 × XQ × XR

                                    = 12 × a × a

                                    = 12 × 4√2 cm  × 4√2 cm

                                    = 12 × (4√2)2 cm2

                                    = 12 × 32 cm2  

                                    = 16 cm2  

Therefore, area of the shaded portion = area of the ∆PQR - area of the ∆XQR

                                                      = (8√21) cm2 - 16 cm2

                                                      = (8√21 - 16) cm2  

                                                      = 8(√21 - 2) cm2  

                                                      = 8 × 2.58 cm2  

                                                      = 20.64 cm2  






9th Grade Math

From Perimeter and Area of a Triangle to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Pie Chart | Definition of Pie Chart | Construction |Examples

    Jul 31, 25 05:12 PM

    Pie Chart Circle
    Data can also be represented in a circle. This method, to represent data, is called a pie chart. Let us understand this method with the help of an example.

    Read More

  2. Frequency Distribution |Tally Marks |Frequency Distribution Table

    Jul 31, 25 12:23 PM

    Frequency Table
    What is frequency distribution?The number of times a particular observation occurs in a given data is called its frequency. In 7ᵗʰ grade and 8ᵗʰ grade frequency distribution,

    Read More

  3. 5th Grade Bar Graph | Definition | Interpret Bar Graphs|Free Worksheet

    Jul 31, 25 05:16 AM

    Draw a Vertical Bar Graph
    We learn how to represent the data on the bar graph. Data can be represented by bars (like rectangle) whose lengths represent numerical values. One can use horizontal or vertical bars. Instead of rect…

    Read More

  4. Construction of Bar Graphs | Examples on Construction of Column Graph

    Jul 31, 25 03:35 AM

    What is Bar Graph?
    Now we will discuss about the construction of bar graphs or column graph. In brief let us recall about, what is bar graph? Bar graph is the simplest way to represent a data. In consists of rectangular…

    Read More

  5. Successor and Predecessor | Successor of a Whole Number | Predecessor

    Jul 29, 25 12:59 AM

    Successor and Predecessor
    The number that comes just before a number is called the predecessor. So, the predecessor of a given number is 1 less than the given number. Successor of a given number is 1 more than the given number…

    Read More