Perimeter and Area of a Triangle

Here we will discuss about the perimeter and area of a triangle and some of its geometrical properties.

Perimeter, Area and Altitude of a Triangle:

Perimeter, Area and Altitude of a Triangle

Perimeter of a triangle (P) = Sum of the sides = a + b + c

Semiperimeter of a triangle (s) = \(\frac{1}{2}\)(a + b + c)

Area of a triangle (A) = \(\frac{1}{2}\) × base × altitude = \(\frac{1}{2}\)ah

Here any side can be taken as base; the length of the perpendicular from the corresponding vertex to this side is the altitude.

Area = \(\sqrt{\textrm{s(s - a)(s - b)(s - c)}}\)  (Heron’s formula)

Altitude (h) = \(\frac{\textrm{area}}{\frac{1}{2} \times \textrm{base}}\) = \(\frac{2\triangle}{a}\)


Solved Example on Finding the Perimeter, Semiperimeter and Area

 of a Triangle: 

The sides of a triangle are 4 cm, 5 cm and 7 cm. Find its perimeter, semiperimeter and area.

Solution:

Perimeter of a triangle (P) = Sum of the sides

                                      = a + b + c

                                      = 4 cm + 5 cm + 7 cm

                                      = (4 + 5 + 7) cm

                                      = 16 cm


Semiperimeter of a triangle (s) = \(\frac{1}{2}\)(a + b + c)

                                             = \(\frac{1}{2}\)(4 cm + 5 cm + 7 cm)

                                             = \(\frac{1}{2}\)(4 + 5 + 7) cm

                                             = \(\frac{1}{2}\) × 16 cm

                                             = 8 cm

Area of a triangle = \(\sqrt{\textrm{s(s - a)(s - b)(s - c)}}\) 

                          = \(\sqrt{\textrm{8(8 - 4)(8 - 5)(8 - 7)}}\) cm\(^{2}\)

                          = \(\sqrt{\textrm{8 × 4 × 3 × 1}}\) cm\(^{2}\)

                          = \(\sqrt{96}\) cm\(^{2}\)

                          = \(\sqrt{16 × 6}\) cm\(^{2}\)

                          = 4\(\sqrt{6}\) cm\(^{2}\)

                          = 4 × 2.45 cm\(^{2}\)

                          = 9.8 cm\(^{2}\)


Perimeter, Area and Altitude of an Equilateral Triangle:

Perimeter, Area and Altitude of an Equilateral Triangle

Perimeter of an equilateral triangle (P) = 3 × side = 3a

Area of an equilateral triangle (A) = \(\frac{√3}{4}\) × (side)\(^{2}\) = \(\frac{√3}{4}\) a\(^{2}\)

Altitude of an equilateral triangle (h) = \(\frac{√3}{4}\) a


Trigonometric formula for area of a triangle:

Trigonometric Formula for Area of a Triangle

Area of ∆ABC = \(\frac{1}{2}\) × ca sin B

                    = \(\frac{1}{2}\) × ab sin C

                    = \(\frac{1}{2}\) × bc sin A

(since, ∆ = \(\frac{1}{2}\) ah = \(\frac{1}{2}\) ca ∙ \(\frac{h}{c}\) = \(\frac{1}{2}\) ca sin B, etc.)


Solved Example on Finding the Area of a Triangle: 

In a ∆ABC, BC = 6 cm, AB = 4 cm and ∠ABC = 60°. Find its area.

Solution:

Area of ∆ABC = \(\frac{1}{2}\) ac sin B = \(\frac{1}{2}\) × 6 × 4 sin 60° cm\(^{2}\)

                    = \(\frac{1}{2}\) × 6 × 4 × \(\frac{√3}{2}\) cm\(^{2}\)

                    = 6√3 cm\(^{2}\)

                    = 6 × 1.73 cm\(^{2}\)

                    = 10.38 cm\(^{2}\)


Some geometrical properties of an isosceles triangle:

Geometrical Properties of an Isosceles Triangle

In the isosceles ∆PQR, PQ = PR, QR is the base, and PT is the altitude.

Then, ∠PTR = 90°, QT = TR, PT\(^{2}\) + TR\(^{2}\) = PR\(^{2}\) (by Pythagoras’ theorem)

 ∠PQR = ∠PRQ, ∠QPT = ∠RPT.


Some geometrical properties of a right-angled triangle:

In the right-angled ∆PQR, ∠PQR = 90°; PQ, QR are the sides (forming the right angle) and PR is the hypotenuse.

Geometrical Properties of a Right-angled Triangle

Then, PQ ⊥ QR (therefore, if QR is the base, PQ is the altitude).

PQ\(^{2}\) + QR\(^{2}\) = PR\(^{2}\) (by Pythagoras’ theorem)

Area of the ∆PQR = \(\frac{1}{2}\) ∙ PQ ∙ QR

⟹ PQ ∙ QR = 2 × area of the ∆PQR.

Again, area of the ∆PQR = \(\frac{1}{2}\) ∙ QT ∙ PR

⟹ QT ∙ PR = 2 × area of the ∆PQR.

Therefore, PQ ∙ QR = QT ∙ PR = 2 × Area of the ∆PQR.


Solved Examples on Perimeter and Area of a Triangle:

1. Find the perimeter of an equilateral triangle whose area is equal to that of a triangle with sides 21 cm, 16 cm and 13 cm.

Solution:

Let a side of the equilateral triangle = x.

Then, its area = \(\frac{√3}{4}\) x\(^{2}\)

Now, the area of the other triangle = \(\sqrt{\textrm{s(s - a)(s - b)(s - c)}}\) 

Here, s = \(\frac{1}{2}\) (a + b + c)

           = \(\frac{1}{2}\) (21 + 16 + 13) cm

           = \(\frac{1}{2}\) 50 cm

           = 25 cm

Therefore, area of the other triangle = \(\sqrt{\textrm{25(25 - 21)(25 - 16)(25 - 13)}}\) cm\(^{2}\)

                                                     = \(\sqrt{\textrm{25 ∙ 4 ∙ 9 ∙ 12}}\) cm\(^{2}\)

                                                     = 60\(\sqrt{\textrm{3}}\) cm\(^{2}\)

According to the question, \(\frac{√3}{4}\) x\(^{2}\) = 60\(\sqrt{\textrm{3}}\) cm\(^{2}\)

⟹ x\(^{2}\) = 240 cm\(^{2}\)

Therefore, x = 4√15 cm


2. PQR is an isosceles triangle whose equal sides PQ and PR are 10 cm each, and the base QR measures 8 cm. PM is the perpendicular from P to QR and X is a point on PM such that ∠QXR = 90°. Find the area of the shaded portion.

Solved Examples on Perimeter and Area of a Triangle

Solution:

Since PQR is an isosceles triangle and PM ⊥ QR, QR is bisected at M.

Therefore, QM = MR = \(\frac{1}{2}\) QR = \(\frac{1}{2}\) × 8 cm = 4 cm

Now, PQ\(^{2}\) = PM\(^{2}\) + QM\(^{2}\) (by Pythagoras’ theorem)

Therefore, 10\(^{2}\) cm\(^{2}\) = PM\(^{2}\) + 4\(^{2}\) cm\(^{2}\)

or, PM\(^{2}\) = 10\(^{2}\) cm\(^{2}\) - 4\(^{2}\) cm\(^{2}\)

                       = 100 cm\(^{2}\) - 16 cm\(^{2}\)

                       = (100 - 16) cm\(^{2}\)

                       = 84 cm\(^{2}\)

Therefore, PM\(^{2}\) = 2√21 cm

Therefore, area of the ∆PQR = \(\frac{1}{2}\) × base × altitude

                                         = \(\frac{1}{2}\) × QR × PM

                                         = (\(\frac{1}{2}\) × 8 × 2√21) cm\(^{2}\)

                                         = 8√21) cm\(^{2}\)

From geometry, ∆XMQ ≅ ∆XMR (SAS criterion)

We get, XQ =XR = a (say)

Therefore, from the right-angled ∆QXR, a\(^{2}\) + a\(^{2}\) = QR\(^{2}\)

or, 2a\(^{2}\) = 8\(^{2}\) cm\(^{2}\)

or, 2a\(^{2}\) = 64 cm\(^{2}\)

or, a\(^{2}\) = 32 cm\(^{2}\)

Therefore, a = 4√2 cm

Again, area of the ∆XQR = \(\frac{1}{2}\) × XQ × XR

                                    = \(\frac{1}{2}\) × a × a

                                    = \(\frac{1}{2}\) × 4√2 cm  × 4√2 cm

                                    = \(\frac{1}{2}\) × (4√2)\(^{2}\) cm\(^{2}\)

                                    = \(\frac{1}{2}\) × 32 cm\(^{2}\)  

                                    = 16 cm\(^{2}\)  

Therefore, area of the shaded portion = area of the ∆PQR - area of the ∆XQR

                                                      = (8√21) cm\(^{2}\) - 16 cm\(^{2}\)

                                                      = (8√21 - 16) cm\(^{2}\)  

                                                      = 8(√21 - 2) cm\(^{2}\)  

                                                      = 8 × 2.58 cm\(^{2}\)  

                                                      = 20.64 cm\(^{2}\)  






9th Grade Math

From Perimeter and Area of a Triangle to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Worksheet on Triangle | Homework on Triangle | Different types|Answers

    Jun 21, 24 02:19 AM

    Find the Number of Triangles
    In the worksheet on triangle we will solve 12 different types of questions. 1. Take three non - collinear points L, M, N. Join LM, MN and NL. What figure do you get? Name: (a)The side opposite to ∠L…

    Read More

  2. Worksheet on Circle |Homework on Circle |Questions on Circle |Problems

    Jun 21, 24 01:59 AM

    Circle
    In worksheet on circle we will solve 10 different types of question in circle. 1. The following figure shows a circle with centre O and some line segments drawn in it. Classify the line segments as ra…

    Read More

  3. Circle Math | Parts of a Circle | Terms Related to the Circle | Symbol

    Jun 21, 24 01:30 AM

    Circle using a Compass
    In circle math the terms related to the circle are discussed here. A circle is such a closed curve whose every point is equidistant from a fixed point called its centre. The symbol of circle is O. We…

    Read More

  4. Circle | Interior and Exterior of a Circle | Radius|Problems on Circle

    Jun 21, 24 01:00 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More

  5. Quadrilateral Worksheet |Different Types of Questions in Quadrilateral

    Jun 19, 24 09:49 AM

    In math practice test on quadrilateral worksheet we will practice different types of questions in quadrilateral. Students can practice the questions of quadrilateral worksheet before the examinations

    Read More