Perimeter and Area of a Triangle

Here we will discuss about the perimeter and area of a triangle and some of its geometrical properties.

Perimeter, Area and Altitude of a Triangle:

Perimeter, Area and Altitude of a Triangle

Perimeter of a triangle (P) = Sum of the sides = a + b + c

Semiperimeter of a triangle (s) = \(\frac{1}{2}\)(a + b + c)

Area of a triangle (A) = \(\frac{1}{2}\) × base × altitude = \(\frac{1}{2}\)ah

Here any side can be taken as base; the length of the perpendicular from the corresponding vertex to this side is the altitude.

Area = \(\sqrt{\textrm{s(s - a)(s - b)(s - c)}}\)  (Heron’s formula)

Altitude (h) = \(\frac{\textrm{area}}{\frac{1}{2} \times \textrm{base}}\) = \(\frac{2\triangle}{a}\)


Solved Example on Finding the Perimeter, Semiperimeter and Area

 of a Triangle: 

The sides of a triangle are 4 cm, 5 cm and 7 cm. Find its perimeter, semiperimeter and area.

Solution:

Perimeter of a triangle (P) = Sum of the sides

                                      = a + b + c

                                      = 4 cm + 5 cm + 7 cm

                                      = (4 + 5 + 7) cm

                                      = 16 cm


Semiperimeter of a triangle (s) = \(\frac{1}{2}\)(a + b + c)

                                             = \(\frac{1}{2}\)(4 cm + 5 cm + 7 cm)

                                             = \(\frac{1}{2}\)(4 + 5 + 7) cm

                                             = \(\frac{1}{2}\) × 16 cm

                                             = 8 cm

Area of a triangle = \(\sqrt{\textrm{s(s - a)(s - b)(s - c)}}\) 

                          = \(\sqrt{\textrm{8(8 - 4)(8 - 5)(8 - 7)}}\) cm\(^{2}\)

                          = \(\sqrt{\textrm{8 × 4 × 3 × 1}}\) cm\(^{2}\)

                          = \(\sqrt{96}\) cm\(^{2}\)

                          = \(\sqrt{16 × 6}\) cm\(^{2}\)

                          = 4\(\sqrt{6}\) cm\(^{2}\)

                          = 4 × 2.45 cm\(^{2}\)

                          = 9.8 cm\(^{2}\)


Perimeter, Area and Altitude of an Equilateral Triangle:

Perimeter, Area and Altitude of an Equilateral Triangle

Perimeter of an equilateral triangle (P) = 3 × side = 3a

Area of an equilateral triangle (A) = \(\frac{√3}{4}\) × (side)\(^{2}\) = \(\frac{√3}{4}\) a\(^{2}\)

Altitude of an equilateral triangle (h) = \(\frac{√3}{4}\) a


Trigonometric formula for area of a triangle:

Trigonometric Formula for Area of a Triangle

Area of ∆ABC = \(\frac{1}{2}\) × ca sin B

                    = \(\frac{1}{2}\) × ab sin C

                    = \(\frac{1}{2}\) × bc sin A

(since, ∆ = \(\frac{1}{2}\) ah = \(\frac{1}{2}\) ca ∙ \(\frac{h}{c}\) = \(\frac{1}{2}\) ca sin B, etc.)


Solved Example on Finding the Area of a Triangle: 

In a ∆ABC, BC = 6 cm, AB = 4 cm and ∠ABC = 60°. Find its area.

Solution:

Area of ∆ABC = \(\frac{1}{2}\) ac sin B = \(\frac{1}{2}\) × 6 × 4 sin 60° cm\(^{2}\)

                    = \(\frac{1}{2}\) × 6 × 4 × \(\frac{√3}{2}\) cm\(^{2}\)

                    = 6√3 cm\(^{2}\)

                    = 6 × 1.73 cm\(^{2}\)

                    = 10.38 cm\(^{2}\)


Some geometrical properties of an isosceles triangle:

Geometrical Properties of an Isosceles Triangle

In the isosceles ∆PQR, PQ = PR, QR is the base, and PT is the altitude.

Then, ∠PTR = 90°, QT = TR, PT\(^{2}\) + TR\(^{2}\) = PR\(^{2}\) (by Pythagoras’ theorem)

 ∠PQR = ∠PRQ, ∠QPT = ∠RPT.


Some geometrical properties of a right-angled triangle:

In the right-angled ∆PQR, ∠PQR = 90°; PQ, QR are the sides (forming the right angle) and PR is the hypotenuse.

Geometrical Properties of a Right-angled Triangle

Then, PQ ⊥ QR (therefore, if QR is the base, PQ is the altitude).

PQ\(^{2}\) + QR\(^{2}\) = PR\(^{2}\) (by Pythagoras’ theorem)

Area of the ∆PQR = \(\frac{1}{2}\) ∙ PQ ∙ QR

⟹ PQ ∙ QR = 2 × area of the ∆PQR.

Again, area of the ∆PQR = \(\frac{1}{2}\) ∙ QT ∙ PR

⟹ QT ∙ PR = 2 × area of the ∆PQR.

Therefore, PQ ∙ QR = QT ∙ PR = 2 × Area of the ∆PQR.


Solved Examples on Perimeter and Area of a Triangle:

1. Find the perimeter of an equilateral triangle whose area is equal to that of a triangle with sides 21 cm, 16 cm and 13 cm.

Solution:

Let a side of the equilateral triangle = x.

Then, its area = \(\frac{√3}{4}\) x\(^{2}\)

Now, the area of the other triangle = \(\sqrt{\textrm{s(s - a)(s - b)(s - c)}}\) 

Here, s = \(\frac{1}{2}\) (a + b + c)

           = \(\frac{1}{2}\) (21 + 16 + 13) cm

           = \(\frac{1}{2}\) 50 cm

           = 25 cm

Therefore, area of the other triangle = \(\sqrt{\textrm{25(25 - 21)(25 - 16)(25 - 13)}}\) cm\(^{2}\)

                                                     = \(\sqrt{\textrm{25 ∙ 4 ∙ 9 ∙ 12}}\) cm\(^{2}\)

                                                     = 60\(\sqrt{\textrm{3}}\) cm\(^{2}\)

According to the question, \(\frac{√3}{4}\) x\(^{2}\) = 60\(\sqrt{\textrm{3}}\) cm\(^{2}\)

⟹ x\(^{2}\) = 240 cm\(^{2}\)

Therefore, x = 4√15 cm


2. PQR is an isosceles triangle whose equal sides PQ and PR are 10 cm each, and the base QR measures 8 cm. PM is the perpendicular from P to QR and X is a point on PM such that ∠QXR = 90°. Find the area of the shaded portion.

Solved Examples on Perimeter and Area of a Triangle

Solution:

Since PQR is an isosceles triangle and PM ⊥ QR, QR is bisected at M.

Therefore, QM = MR = \(\frac{1}{2}\) QR = \(\frac{1}{2}\) × 8 cm = 4 cm

Now, PQ\(^{2}\) = PM\(^{2}\) + QM\(^{2}\) (by Pythagoras’ theorem)

Therefore, 10\(^{2}\) cm\(^{2}\) = PM\(^{2}\) + 4\(^{2}\) cm\(^{2}\)

or, PM\(^{2}\) = 10\(^{2}\) cm\(^{2}\) - 4\(^{2}\) cm\(^{2}\)

                       = 100 cm\(^{2}\) - 16 cm\(^{2}\)

                       = (100 - 16) cm\(^{2}\)

                       = 84 cm\(^{2}\)

Therefore, PM\(^{2}\) = 2√21 cm

Therefore, area of the ∆PQR = \(\frac{1}{2}\) × base × altitude

                                         = \(\frac{1}{2}\) × QR × PM

                                         = (\(\frac{1}{2}\) × 8 × 2√21) cm\(^{2}\)

                                         = 8√21) cm\(^{2}\)

From geometry, ∆XMQ ≅ ∆XMR (SAS criterion)

We get, XQ =XR = a (say)

Therefore, from the right-angled ∆QXR, a\(^{2}\) + a\(^{2}\) = QR\(^{2}\)

or, 2a\(^{2}\) = 8\(^{2}\) cm\(^{2}\)

or, 2a\(^{2}\) = 64 cm\(^{2}\)

or, a\(^{2}\) = 32 cm\(^{2}\)

Therefore, a = 4√2 cm

Again, area of the ∆XQR = \(\frac{1}{2}\) × XQ × XR

                                    = \(\frac{1}{2}\) × a × a

                                    = \(\frac{1}{2}\) × 4√2 cm  × 4√2 cm

                                    = \(\frac{1}{2}\) × (4√2)\(^{2}\) cm\(^{2}\)

                                    = \(\frac{1}{2}\) × 32 cm\(^{2}\)  

                                    = 16 cm\(^{2}\)  

Therefore, area of the shaded portion = area of the ∆PQR - area of the ∆XQR

                                                      = (8√21) cm\(^{2}\) - 16 cm\(^{2}\)

                                                      = (8√21 - 16) cm\(^{2}\)  

                                                      = 8(√21 - 2) cm\(^{2}\)  

                                                      = 8 × 2.58 cm\(^{2}\)  

                                                      = 20.64 cm\(^{2}\)  






9th Grade Math

From Perimeter and Area of a Triangle to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 14, 24 02:12 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 14, 24 12:25 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  3. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 13, 24 08:43 AM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  4. Patterns in Math | Missing Number | Counting Numbers | Worksheets

    Dec 13, 24 12:31 AM

    Finding patterns in math is very important to understand the sequence in the series. We need to find the exact missing number that from the group of numbers. The counting numbers may be counting

    Read More

  5. Concept of Pattern | Similar Patterns in Mathematics | Similar Pattern

    Dec 12, 24 11:22 PM

    Patterns in Necklace
    Concept of pattern will help us to learn the basic number patterns and table patterns. Animals such as all cows, all lions, all dogs and all other animals have dissimilar features. All mangoes have si…

    Read More