Perimeter and Area of a Triangle

Here we will discuss about the perimeter and area of a triangle and some of its geometrical properties.

Perimeter, Area and Altitude of a Triangle:

Perimeter, Area and Altitude of a Triangle

Perimeter of a triangle (P) = Sum of the sides = a + b + c

Semiperimeter of a triangle (s) = \(\frac{1}{2}\)(a + b + c)

Area of a triangle (A) = \(\frac{1}{2}\) × base × altitude = \(\frac{1}{2}\)ah

Here any side can be taken as base; the length of the perpendicular from the corresponding vertex to this side is the altitude.

Area = \(\sqrt{\textrm{s(s - a)(s - b)(s - c)}}\)  (Heron’s formula)

Altitude (h) = \(\frac{\textrm{area}}{\frac{1}{2} \times \textrm{base}}\) = \(\frac{2\triangle}{a}\)


Solved Example on Finding the Perimeter, Semiperimeter and Area

 of a Triangle: 

The sides of a triangle are 4 cm, 5 cm and 7 cm. Find its perimeter, semiperimeter and area.

Solution:

Perimeter of a triangle (P) = Sum of the sides

                                      = a + b + c

                                      = 4 cm + 5 cm + 7 cm

                                      = (4 + 5 + 7) cm

                                      = 16 cm


Semiperimeter of a triangle (s) = \(\frac{1}{2}\)(a + b + c)

                                             = \(\frac{1}{2}\)(4 cm + 5 cm + 7 cm)

                                             = \(\frac{1}{2}\)(4 + 5 + 7) cm

                                             = \(\frac{1}{2}\) × 16 cm

                                             = 8 cm

Area of a triangle = \(\sqrt{\textrm{s(s - a)(s - b)(s - c)}}\) 

                          = \(\sqrt{\textrm{8(8 - 4)(8 - 5)(8 - 7)}}\) cm\(^{2}\)

                          = \(\sqrt{\textrm{8 × 4 × 3 × 1}}\) cm\(^{2}\)

                          = \(\sqrt{96}\) cm\(^{2}\)

                          = \(\sqrt{16 × 6}\) cm\(^{2}\)

                          = 4\(\sqrt{6}\) cm\(^{2}\)

                          = 4 × 2.45 cm\(^{2}\)

                          = 9.8 cm\(^{2}\)


Perimeter, Area and Altitude of an Equilateral Triangle:

Perimeter, Area and Altitude of an Equilateral Triangle

Perimeter of an equilateral triangle (P) = 3 × side = 3a

Area of an equilateral triangle (A) = \(\frac{√3}{4}\) × (side)\(^{2}\) = \(\frac{√3}{4}\) a\(^{2}\)

Altitude of an equilateral triangle (h) = \(\frac{√3}{4}\) a


Trigonometric formula for area of a triangle:

Trigonometric Formula for Area of a Triangle

Area of ∆ABC = \(\frac{1}{2}\) × ca sin B

                    = \(\frac{1}{2}\) × ab sin C

                    = \(\frac{1}{2}\) × bc sin A

(since, ∆ = \(\frac{1}{2}\) ah = \(\frac{1}{2}\) ca ∙ \(\frac{h}{c}\) = \(\frac{1}{2}\) ca sin B, etc.)


Solved Example on Finding the Area of a Triangle: 

In a ∆ABC, BC = 6 cm, AB = 4 cm and ∠ABC = 60°. Find its area.

Solution:

Area of ∆ABC = \(\frac{1}{2}\) ac sin B = \(\frac{1}{2}\) × 6 × 4 sin 60° cm\(^{2}\)

                    = \(\frac{1}{2}\) × 6 × 4 × \(\frac{√3}{2}\) cm\(^{2}\)

                    = 6√3 cm\(^{2}\)

                    = 6 × 1.73 cm\(^{2}\)

                    = 10.38 cm\(^{2}\)


Some geometrical properties of an isosceles triangle:

Geometrical Properties of an Isosceles Triangle

In the isosceles ∆PQR, PQ = PR, QR is the base, and PT is the altitude.

Then, ∠PTR = 90°, QT = TR, PT\(^{2}\) + TR\(^{2}\) = PR\(^{2}\) (by Pythagoras’ theorem)

 ∠PQR = ∠PRQ, ∠QPT = ∠RPT.


Some geometrical properties of a right-angled triangle:

In the right-angled ∆PQR, ∠PQR = 90°; PQ, QR are the sides (forming the right angle) and PR is the hypotenuse.

Geometrical Properties of a Right-angled Triangle

Then, PQ ⊥ QR (therefore, if QR is the base, PQ is the altitude).

PQ\(^{2}\) + QR\(^{2}\) = PR\(^{2}\) (by Pythagoras’ theorem)

Area of the ∆PQR = \(\frac{1}{2}\) ∙ PQ ∙ QR

⟹ PQ ∙ QR = 2 × area of the ∆PQR.

Again, area of the ∆PQR = \(\frac{1}{2}\) ∙ QT ∙ PR

⟹ QT ∙ PR = 2 × area of the ∆PQR.

Therefore, PQ ∙ QR = QT ∙ PR = 2 × Area of the ∆PQR.


Solved Examples on Perimeter and Area of a Triangle:

1. Find the perimeter of an equilateral triangle whose area is equal to that of a triangle with sides 21 cm, 16 cm and 13 cm.

Solution:

Let a side of the equilateral triangle = x.

Then, its area = \(\frac{√3}{4}\) x\(^{2}\)

Now, the area of the other triangle = \(\sqrt{\textrm{s(s - a)(s - b)(s - c)}}\) 

Here, s = \(\frac{1}{2}\) (a + b + c)

           = \(\frac{1}{2}\) (21 + 16 + 13) cm

           = \(\frac{1}{2}\) 50 cm

           = 25 cm

Therefore, area of the other triangle = \(\sqrt{\textrm{25(25 - 21)(25 - 16)(25 - 13)}}\) cm\(^{2}\)

                                                     = \(\sqrt{\textrm{25 ∙ 4 ∙ 9 ∙ 12}}\) cm\(^{2}\)

                                                     = 60\(\sqrt{\textrm{3}}\) cm\(^{2}\)

According to the question, \(\frac{√3}{4}\) x\(^{2}\) = 60\(\sqrt{\textrm{3}}\) cm\(^{2}\)

⟹ x\(^{2}\) = 240 cm\(^{2}\)

Therefore, x = 4√15 cm


2. PQR is an isosceles triangle whose equal sides PQ and PR are 10 cm each, and the base QR measures 8 cm. PM is the perpendicular from P to QR and X is a point on PM such that ∠QXR = 90°. Find the area of the shaded portion.

Solved Examples on Perimeter and Area of a Triangle

Solution:

Since PQR is an isosceles triangle and PM ⊥ QR, QR is bisected at M.

Therefore, QM = MR = \(\frac{1}{2}\) QR = \(\frac{1}{2}\) × 8 cm = 4 cm

Now, PQ\(^{2}\) = PM\(^{2}\) + QM\(^{2}\) (by Pythagoras’ theorem)

Therefore, 10\(^{2}\) cm\(^{2}\) = PM\(^{2}\) + 4\(^{2}\) cm\(^{2}\)

or, PM\(^{2}\) = 10\(^{2}\) cm\(^{2}\) - 4\(^{2}\) cm\(^{2}\)

                       = 100 cm\(^{2}\) - 16 cm\(^{2}\)

                       = (100 - 16) cm\(^{2}\)

                       = 84 cm\(^{2}\)

Therefore, PM\(^{2}\) = 2√21 cm

Therefore, area of the ∆PQR = \(\frac{1}{2}\) × base × altitude

                                         = \(\frac{1}{2}\) × QR × PM

                                         = (\(\frac{1}{2}\) × 8 × 2√21) cm\(^{2}\)

                                         = 8√21) cm\(^{2}\)

From geometry, ∆XMQ ≅ ∆XMR (SAS criterion)

We get, XQ =XR = a (say)

Therefore, from the right-angled ∆QXR, a\(^{2}\) + a\(^{2}\) = QR\(^{2}\)

or, 2a\(^{2}\) = 8\(^{2}\) cm\(^{2}\)

or, 2a\(^{2}\) = 64 cm\(^{2}\)

or, a\(^{2}\) = 32 cm\(^{2}\)

Therefore, a = 4√2 cm

Again, area of the ∆XQR = \(\frac{1}{2}\) × XQ × XR

                                    = \(\frac{1}{2}\) × a × a

                                    = \(\frac{1}{2}\) × 4√2 cm  × 4√2 cm

                                    = \(\frac{1}{2}\) × (4√2)\(^{2}\) cm\(^{2}\)

                                    = \(\frac{1}{2}\) × 32 cm\(^{2}\)  

                                    = 16 cm\(^{2}\)  

Therefore, area of the shaded portion = area of the ∆PQR - area of the ∆XQR

                                                      = (8√21) cm\(^{2}\) - 16 cm\(^{2}\)

                                                      = (8√21 - 16) cm\(^{2}\)  

                                                      = 8(√21 - 2) cm\(^{2}\)  

                                                      = 8 × 2.58 cm\(^{2}\)  

                                                      = 20.64 cm\(^{2}\)  






9th Grade Math

From Perimeter and Area of a Triangle to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on 8 Times Table | Printable Multiplication Table | Video

    Mar 18, 25 03:30 PM

    worksheet on multiplication of 8 times table
    Worksheet on 8 times table can be printed out. Homeschoolers can also use these multiplication table sheets to practice at home.

    Read More

  2. Worksheet on Roman Numerals |Roman Numerals|Symbols for Roman Numerals

    Mar 18, 25 02:47 PM

    Roman Numbers Table
    Practice the worksheet on roman numerals or numbers. This sheet will encourage the students to practice about the symbols for roman numerals and their values. Write the number for the following: (a) V…

    Read More

  3. Conversion of Roman Numeration | Roman Numerals |Hindu Arabic Numerals

    Mar 18, 25 02:12 PM

    We will learn the conversion of Roman numeration. First we will learn how to convert numbers in roman numerals. 1. Convert 579 in roman numerals.

    Read More

  4. Rules of Roman Numeration |Roman Number System|Roman Numeration System

    Mar 18, 25 09:41 AM

    Rules of Roman Numerals
    We will learn about Roman Numeration and its rules. We know that there are seven basic Roman Numerals. They are I, V, X, L, C, D and M. These numerals stand for the number 1, 5, 10, 50, 100, 500

    Read More

  5. Divisible by 2 | Test of Divisibility by 2 |Rules of Divisibility by 2

    Mar 17, 25 04:04 PM

    Divisible by 2
    A number is divisible by 2 if the digit at unit place is either 0 or multiple of 2. So a number is divisible by 2 if digit at its units place is 0, 2, 4, 6 or 8.

    Read More