Loading [MathJax]/jax/output/HTML-CSS/jax.js

Subscribe to our YouTube channel for the latest videos, updates, and tips.


Miscellaneous Problems on Factorization

Here we will solve different types of Miscellaneous Problems on Factorization.

1. Factorize: x(2x + 5) – 3

Solution:

Given expression = x(2x + 5) – 3

                         = 2x2 + 5x – 3

                         = 2x2 + 6x – x – 3,

                            [Since, 2(-3) = - 6 = 6 × (-1), and 6 + (-1) = 5]

                         = 2x(x + 3) – 1(x + 3)

                         = (x + 3)(2x – 1).

2. Factorize: 4x2y – 44x2y + 112xy

Solution:

Given expression = 4x2y – 44x2y + 112xy

                         = 4xy(x2 – 11x + 28)

                         = 4xy(x2 – 7x – 4x + 28)

                         = 4xy{x(x – 7) – 4(x - 7)}

                         = 4xy(x - 7)(x - 4)


3. Factorize: (a – b)3 +(b – c)3 + (c – a)3.

Solution:

Let a – b = x, b – c = y, c – a = z. Adding, x + y + z = 0.

Therefore, the given expression = x3 + y3 + z3 = 3xyz (Since, x + y + z = 0).

Therefore, (a – b)3 + (b – c)3 + (c – a)3 = 3(a – b)(b – c)(c –a).


4. Resolve into factors: x3 + x2 - 1x2 + 1x3

 Solution:

Given expression = x3 + x2 - 1x2 + 1x3

                          = (x + 1x)(x2 – x ∙ 1x + 1x2) + (x + 1x)(x - 1x)

                          = (x + 1x){ x2 – x ∙ 1x + 1x2 + x - 1x}

                          = (x + 1x){ x2 – 1 + 1x2 + x - 1x}

                         = (x + 1x)( x2 + x – 1 - 1x + 1x2)


5. Factorize: 27(a + 2b)3 + (a – 6b)3

Solution:

Given expression = 27(a + 2b)3 + (a – 6b)3

                          = {3(a + 2b)}3 + (a – 6b)3

                          = {3(a + 2b) + (a – 6b)}[{3(a + 2b)}2 – {3(a + 2b)}(a – 6b) + (a – 6b)2]

                          = (3a + 6b + a – 6b)[9(a2 + 4ab + 4b2) – (3a + 6b)(a – 6b) + a2 – 12ab + 36b2]

                          = 4a[9a2 + 36ab + 36b2 – {3a2 – 18ab + 6ba – 36b2} + a2 – 12ab  + 36b2]

                          = 4a(7a2 + 36ab + 108b2).


6. If x + 1x = 3, find x^3 + 1x3.

Solution:

x3 + 1x3 = (x + 1x)(x2 – x ∙ 1x + 1x2)

            = (x + 1x)[x2 + 1x2 – 1]

            = (x + 1x)[(x + 1x)2 – 3]

            = 3 ∙ [(3)2 – 3]

            = 3 × 0

            = 0.


7. Evaluate: 1283+27231282128×272+2722

Solution:

The given expression = 1283+27231282128×272+2722

                               = (128+272)(1282128×272+2722)1282128×272+2722

                               = 128 + 272

                               = 400.


8. If a + b + c = 10, a2 + b2 + c2 = 38 and a3 + b3 + c3 = 160, find the value of abc.

Solution:

We know, a3 + b3 + c3 – 3abc = (a + b + c)(a2 + b2 + c2 – bc – ca – ab).

Therefore, 160 – 3abc = 10(38 – bc – ca – ab).......................... (i)

Now, (a + b + c)2 = a2 + b2 + c2 + 2bc + 2ca + 2ab

Therefore, 102 = 38 + 2(bc + ca + ab).

⟹ 2(bc + ca + ab) = 102 – 38

⟹ 2(bc + ca + ab) = 100 – 38

⟹ 2(bc + ca + ab) = 62

Therefore, bc + ca + ab = 622 = 31.

Putting in (i), we get,

160 – 3abc = 10(38 – 31)

⟹ 160 – 3abc = 70

⟹ 3abc = 160 - 70

⟹ 3abc = 90.

Therefore, abc = 903 = 30.


9. Find the LCM and HCF of x2 – 2x – 3 and x2 + 3x + 2.

Solution:

Here, x2 – 2x – 3 = x2 – 3x + x – 3

                          = x(x – 3) + 1(x – 3)

                          = (x – 3)(x + 1).

And x2 + 3x + 2 = x2 + 2x + x + 2.

                        = x(x + 2) + 1(x + 2)

                        = (x + 2)(x + 1).

Therefore, by the definition of LCM, the required LCM = (x – 3)(x + 1)(x + 2).

Again, by definition of HCF, the required HCF = x + 1.


10. (i) Find the LCM and HCF of x3 + 27 and x2 – 9.

(ii) Find the LCM and HCF of x3 – 8, x2 - 4 and x2 + 4x + 4.

Solution:

(i) x3 + 27 = x3 + 33

                = (x + 3)(x2 – x ∙ 3 + 32}

                = (x + 3)(x2 – 3x + 9).

x2 – 9 = x2 – 32

          = (x + 3)(x – 3).

Therefore, by definition of LCM,

the required LCM = (x + 3)(x2 – 3x + 9)(x – 3)

                          = (x2 – 9)(x2 – 3x + 9).

Again, by definition of HCF, the required HCF = x + 3.


(ii) x3 – 8 = x3 – 23

                = (x – 2)(x2 + x ∙ 2 + 22)

                = (x – 2)(x2 + 2x + 4).

x2 – 4 = x2 – 22

          = (x + 2)(x - 2).

x2 + 4x + 4 = (x + 2)2.

Therefore, by the definition of LCM, the required LCM = (x – 2)(x + 2)2(x2 + 2x + 4).





9th Grade Math

From Miscellaneous Problems on Factorization to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 10, 25 11:41 AM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More