Methods of Solving Simultaneous Linear Equations

There are different methods for solving simultaneous linear Equations:

I. Elimination of a variable

II. Substitution

III. Cross-multiplication

IV. Evaluation of proportional value of variables 


This topic is purely based upon numerical examples. So, let us solve some examples based upon solving linear equations in two variables.

I: Solved example on simultaneous linear Equations using elimination method:

Solve for ‘x’ and ‘y’:

3x + 2y = 18.  

4x + 5y = 25.  

Solution: 

3x + 2y = 18 ............. (i)

4x + 5y = 25 ............. (ii)

Let us multiply equation (i) by 4 on both sides and equation (ii) by 3 on both sides, so as to make coefficients of ‘x’ equal.

On multiplying, we get;

4(3x + 2y) = 4 ∙ 18

or, 12x + 8y = 72 ............. (iii)

and

3(4x + 5y) = 3 ∙ 25

or, 12x + 15y = 75 ............. (iv)

Subtracting (iii) from (iv), we get;

12x + 15y - (12x + 8y) = 75 - 72

or, 12x + 15y - 12x - 8y = 3

or, 7y = 3

or, y = \(\frac{3}{7}\).

Substituting value of ‘y’ in equation (i), we get;

3x + 2(\(\frac{3}{7}\)) = 18.

or, 3x + \(\frac{6}{7}\) = 18

or, 3x = 18 – \(\frac{6}{7}\)

or, 3x = \(\frac{120}{7}\).

or, x = \(\frac{120}{21}\).

or, x = \(\frac{40}{7}\).

Hence, x = \(\frac{40}{7}\) and y = \(\frac{3}{7}\).


II: Solved examples on simultaneous linear Equations using substitution method:

1.  Solve for ‘x’ and ‘y’:

            x + 3y = 9

           3x + 4y = 20

Solution:

x + 3y = 9 ............. (i)

3x + 4y = 20 ............. (ii)

Taking first equation in reference, i.e,

x + 3y = 9

x = 9 - 3y ............. (iii)

Substituting this value of ‘x’ from previous equation in 2nd equation, we get;

3x + 4y = 20.

or, 3(9 - 3y) + 4y = 20

or, 27 - 9y + 4y = 20

or, -5y = 20 - 27

or, -5y = -7

or, 5y = 7

or, y = \(\frac{7}{5}\)

Substituting this value of y into equation of x in (iii), we get;

x = 9 - 3y

or, x = 9 - 3\(\frac{7}{5}\)

or, x = 9 – \(\frac{21}{5}\)

or, x = \(\frac{247}{5}\).

Hence, x = \(\frac{247}{5}\) and y = \(\frac{7}{5}\).


2. Solve for ‘x’ and ‘y’; 

x + y = 5

4x + y = 10

Solution:

x + y = 5 ............. (i)

4x + y = 10 ............. (ii)

From equation (i),  we get value of y as:

y = 5 - x

substituting this value of y in equation (ii), weget

4x + (5 - x) = 10

or, 4x + 5 - x = 10

or, 3x = 10 - 5

or, 3x = 5

x = \(\frac{5}{3}\).

Substituting this value of x as \(\frac{5}{3}\) in equation y = 5 - x , we get;

y = 5 - \(\frac{5}{3}\)

or, y = \(\frac{10}{3}\).

Hence, x = \(\frac{5}{3}\) and y = \(\frac{10}{3}\).


III. Solved example on simultaneous linear Equations using Cross-multiplication method:

Solve for ‘x’ and ‘y’;

3x + 5y - 25 = 0.

5x + 3y – 35 = 0.

Solution:

Assume two linear equations be

Ax + B1y + C= 0, and

A2x + B2y + C= 0.

The coefficients of x are: Aand  A2.

The coefficients of y are: B1 and B2.

The constant terms are: C1 and  C2.

To solve the equations in a simplified way, we use following table:

Simultaneous Linear Equations

\(\frac{x}{B_{1}C_{2} - B_{2}C_{1}} = \frac{y}{C_{1}A_{2} - C_{2}A_{1}} = \frac{1}{A_{1}B_{2} - A_{2}B_{1}}\)

In the given equations,

The coefficients of x are 3 and 5.

The coefficients of y are 5 and 3.

The constant terms are -25 and -35.

On substituting the respective values, we get

\(\frac{x}{5 × (-35) - 3 × (-25)} = \frac{y}{(-25) × 5 - (-35) × 3} = \frac{1}{3 × 3 - 5 × 5}\).

or, \(\frac{x}{- 175 + 75} = \frac{y}{-125 + 105} = \frac{1}{9 - 25}\).

or, \(\frac{x}{-100} = \frac{y}{-20} = \frac{1}{-16}\).

On equating x term with constant term, we get;

x = \(\frac{25}{4}\).

On equating y term with constant term, we get;

y = \(\frac{5}{4}\).


IV: Solved example on simultaneous linear Equations using evaluation method:

Solve for x and y:

2x + 3y = 4; 3x - 5y = -2

Solution:

The given equations are 

2x + 3y = 4 .......... (1)

3x - 5y = -2.......... (2)

Multiplying equation (2) by 2, we get

6x - 10y = -4.......... (3)

Now we add equations (1) and (3) we get

8x - 7y = 0

or, 8x = 7y

or, \(\frac{x}{7}\) = \(\frac{y}{8}\) (= k)

Substituting x = 7k and y = 8k in equation (1) we get

2 ∙ 7k + 3 ∙ 8k = 4

or, 14k + 24k = 4

or, 38k = 4

or, K = \(\frac{4}{38}\)

or, k = \(\frac{2}{19}\)

Therefore, x = 7 ∙  \(\frac{2}{19}\) and y = 8 ∙ \(\frac{2}{19}\)

Thus, x = \(\frac{14}{19}\) and y = \(\frac{16}{19}\)





9th Grade Math

From Methods of Solving Simultaneous Linear Equations to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Addition of Decimals | How to Add Decimals? | Adding Decimals|Addition

    Apr 17, 25 01:17 PM

    We will discuss here about the addition of decimals. Decimals are added in the same way as we add ordinary numbers. We arrange the digits in columns and then add as required. Let us consider some

    Read More

  2. Expanded form of Decimal Fractions |How to Write a Decimal in Expanded

    Apr 17, 25 12:21 PM

    Expanded form of Decimal
    Decimal numbers can be expressed in expanded form using the place-value chart. In expanded form of decimal fractions we will learn how to read and write the decimal numbers. Note: When a decimal is mi…

    Read More

  3. Math Place Value | Place Value | Place Value Chart | Ones and Tens

    Apr 16, 25 03:10 PM

    0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 are one-digit numbers. Numbers from 10 to 99 are two-digit numbers. Let us look at the digit 6 in the number 64. It is in the tens place of the number. 6 tens = 60 So…

    Read More

  4. Place Value and Face Value | Place and Face Value of Larger Number

    Apr 16, 25 02:55 PM

    Place Value of 3-Digit Numbers
    The place value of a digit in a number is the value it holds to be at the place in the number. We know about the place value and face value of a digit and we will learn about it in details. We know th…

    Read More

  5. Face Value and Place Value|Difference Between Place Value & Face Value

    Apr 16, 25 02:50 PM

    Place Value and Face Value
    What is the difference between face value and place value of digits? Before we proceed to face value and place value let us recall the expanded form of a number. The face value of a digit is the digit…

    Read More