Method of Substitution

Earlier we have seen how minimum of two equations are required for solving linear equation in two variables. Also, we have learnt about the method of eliminations for solving linear equations in two variables. 

Under this topic, we’ll learn about a new method “Method Of Substitution”. As the name suggest, in this method of solving linear equation in two variables, we will be solving linear equations by substituting value of any one of the variables from one of the linear equations and then substituting if into the second equation to get an equation in form of only one variable and then solving this linear equation in one variable in one variable by our normal method. Then, the value of this variable is substituted in the first equation to get the value of second variable.

Steps involved in solving linear equations in two variables by method of substitution:

Step I: Examine the question carefully and make sure that two different linear equations are given in same two variables.

Step II: Choose any one of the equation from two given equations and try to find out value of any one variable in terms of another variable.

Step III: Now substitute the value of this variable that we found from first equation into the second equation.

Step IV: As we substitute the value of one variable into the second equation, we’ll find that the equation has been converted into a linear equation in one variable.

Step V: Earlier we have learnt concept of solving linear equation in one variable. Solve the linear equation in one variable hence formed by using the same concept.

Step VI: As we find out the value of one variable, substitute it in the equation of previous variable to find out its value.


In this way, values of variables are calculated using the concept of method of substitution.


To understand the concept in a better way, let us have a look at the examples solved below:

1. Solve for ‘x’ and ‘y’:

        x + y = 5.

       3x + y = 11.

Solution: 

        x + y = 5 …………… (i)

       3x + y = 11 …………… (ii)

Since we are given two different equations in terms of two different linear equations, let us try to solve them using the concept of method of substitution:

From 1st eq. we find that y = 5 - x.

Substituting value of y in eq. (ii), we get;

        3x + 5 - x = 11.

⟹ 2x = 11 - 5

⟹ 2x = 6

⟹ x = 6/2

⟹ x = 3.

Substituting x = 3 in y = 5 – x, we get;

y = 5- x 

⟹ y = 5 - 3

⟹ y = 2.

Hence, x = 3 and y = 2.


2. Solve for ‘x’ and ‘y’:

       2x + 6y = 8 

       x - 2y = 15

Solution:

       2x + 6y = 8 …………… (i)

       x - 2y = 15 …………… (ii)


From the given equations, let us consider first equation and find out value of one of the variables, say ‘x’ from it:

     2x = 8 - 6y

⟹ x = 4 - 3y.

Substituting x = 4 - 3y/2 in eq. (ii), we get;

4 - 3y - 2y = 15

⟹ -5y = 15 - 4

⟹ -5y = 11

⟹ y = -11/5.

Substituting y = -11/5 in x = 4 - 3y, we get;

x = 4 - 3(-11/5)

⟹ x = 4 + 33/5

⟹ x = 53/5.

Hence, x = 53/5 and y = -11/5.



3. Solve for ‘x’ and ‘y’:

x + 3y = 10 

2x + 3y = 21 

Solution:

x + 3y = 10 …………… (i)

2x + 3y = 21 …………… (ii)

Let us look closely at the given equations and we’ll find that both the equations have ‘3y’ in common. So, we will find value of 3y from eq. (i) and substitute it in eq. (ii) and solve for the value of ‘x’. from eq. (i);

 x + 3y = 10.

⟹ 3y = 10 - x.

Substituting 3y = 10 - x in eq. (ii), we get;

2x + 3y = 21

⟹ 2x + 10 - x = 21

⟹ x = 21 - 10

⟹ x = 11. 

Substituting x = 11 in 3y = 10 – x

3y = 10 – x

⟹ 3y = 10 -11

⟹ 3y = -1

⟹ y = -1/3.

Hence, x = 11 and y = -1/3.


4. Solve for ‘x’ and ‘y’:

5x + y = 20 

10x - 2y = 50 

Solution: 

5x + y = 20 …………… (i)

10x - 2y = 50 …………… (ii)

Let us consider eq. (i) and find out value of ‘y from it and substitute it in eq. (ii). So, from eq. (i);

    5x + y =20

⟹ y = 20 – 5x

Substituting y = 20 - 5x in eq. (ii), we get;

10x - 2(20 - 5x) = 50

⟹ 10x - 40 + 10x = 50

⟹ 20x = 50 + 40

⟹ 20x = 90

⟹ x = 90/20

⟹ x = \(\frac{9}{2}\).


Substituting x = \(\frac{9}{2}\) in y = 20 - 5x, we get;

y = 20 – 5(\(\frac{9}{2}\))

⟹ y = 20 - \(\frac{45}{2}\)

⟹ y = \(\frac{40}{2}\) - \(\frac{45}{2}\)

⟹ y = \(\frac{40 - 45}{2}\)

⟹ y = \(\frac{-5}{2}\)

⟹ y = -\(\frac{5}{2}\)

Hence, x = \(\frac{9}{2}\) and y = -\(\frac{5}{2}\)




9th Grade Math

From Method of Substitution to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 12, 24 11:42 PM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  2. Concept of Pattern | Similar Patterns in Mathematics | Similar Pattern

    Dec 12, 24 11:22 PM

    Patterns in Necklace
    Concept of pattern will help us to learn the basic number patterns and table patterns. Animals such as all cows, all lions, all dogs and all other animals have dissimilar features. All mangoes have si…

    Read More

  3. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 12, 24 10:31 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  4. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More

  5. Points and Line Segment | Two Points in a Curved Surface | Curve Line

    Dec 09, 24 01:08 AM

    Curved Lines and Straight Line
    We will discuss here about points and line segment. We know when two lines meet we get a point. When two points on a plane surface are joined, a straight line segment is obtained.

    Read More