Subscribe to our YouTube channel for the latest videos, updates, and tips.


Maximum and Minimum Values of the Quadratic Expression

We will learn how to find the maximum and minimum values of the quadratic Expression ax^2 + bx + c (a ≠ 0).

When we find the maximum value and the minimum value of ax^2 + bx + c then let us assume y = ax^2 + bx + c.

Or, ax^2 + bx + c - y = 0

Suppose x is real then the discriminant of equation ax^2 + bx + c - y = 0 is ≥ 0

i.e., b^2 - 4a(c - y) ≥ 0

Or, b^2 - 4ac + 4ay ≥ 0

4ay ≥ 4ac - b^2

Case I: When a > 0 

When a > 0 then from 4ay ≥ 4ac - b^2 we get, y ≥ 4ac - b^2/4a

Therefore, we clearly see that the expression y becomes minimum when a > 0

Thus, the minimum value of the expression is 4ac - b^2/4a.

Now, substitute y = 4ac - b^2/4a in equation ax^2 + bx + c - y = 0 we have,

ax^2 + bx + c - (4ac - b^2/4a) = 0

or, 4a^2x^2 + 4abx + b^2 = 0

or, (2ax + b)^2 = 0

or, x = -b/2a

Therefore, we clearly see that the expression y gives its minimum value at x = -b/2a


Case II: When a < 0

When a < 0 then from 4ay ≥ 4ac - b^2 we get,

y ≤ 4ac - b^2/4a

Therefore, we clearly see that the expression y becomes maximum when a < 0.

Thus, the maximum value of the expression is 4ac - b^2/4a.

Now substitute y = 4ac - b^2/4a in equation ax^2 + bx + c - y = 0 we have,

ax^2 + bx + c -(4ac - b^2/4a) =0

or, 4a^2x^2 + 4abx + b^2 = 0

or, (2ax + b)^2 = 0

or, x = -b/2a.

Therefore, we clearly see that the expression y gives its maximum value at x = -b/2a.

 

Solved examples to find the maximum and minimum values of the quadratic Expression ax^2 + bx + c (a ≠ 0):

1. Find the values of x where the quadratic expression 2x^2 - 3x + 5 (x ϵ R) reaches a minimum value. Also find the minimum value.

Solution:

Let us assume y = 2x^2 - 3x + 5

Or, y = 2(x^2 - 3/2x) + 5

Or, y = 2(x^2 -2 * x * ¾ + 9/16 - 9/16) + 5

Or, y = 2(x - ¾)^2 - 9/8 + 5

Or, y = 2(x - ¾)^2 + 31/8

Hence, (x - ¾)^2 ≥ 0, [Since x ϵ R]

Again, from y = 2(x - ¾)^2 + 31/8 we can clearly see that y ≥ 31/8 and y = 31/8 when (x - ¾)^2 = 0 or, x = ¾

Therefore, when x is ¾ then the expression 2x^2 - 3x + 5 reaches the minimum value and the minimum value is 31/8.


2. Find the value of a when the value of 8a - a^2 - 15 is maximum.

Solution:

Let us assume y = 8a - a^2 -15

Or, y = - 15 - (a^2 - 8a)

Or, y = -15 - (a^2 - 2 * a * 4 + 4^2 - 4^2)

Or, y = -15 - (a - 4)^2 + 16

Or, y = 1 - (a - 4)^2

Hence, we can clearly see that (a - 4)^2 ≥ 0, [Since a is real]

Therefore, from y = 1 - (a - 4)^2 we can clearly see that y ≤ 1 and y = 1 when (a - 4)^2 = 0 or, a = 4.

Therefore, when a is 4 then the expression 8a - a^2 - 15 reaches the maximum value and the maximum value is 1.




11 and 12 Grade Math 

From Maximum and Minimum Values of the Quadratic Expression to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 10, 25 11:41 AM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More