Processing math: 100%

Subscribe to our YouTube channel for the latest videos, updates, and tips.


Linear Inequation in One Variable

We will discuss here about the linear inequation in one variable.


The mathematical statement which says that one quantity is not equal to another quantity is called an inequation.

For example: If m and n are two quantities such that m ≠ n; then any one of the following relations (conditions) will be true:

i.e., either (i) m > n

(ii) m ≥ n

(iii) m < n

Or, m ≤ n

Each of the four conditions, given above, is an inequation.




Consider the following statement:

“x is a number which when added to 2 gives a sum less than 6.”

The above sentence can be expressed as x + 2 < 6, where ‘<’ stands for “is less than”.

x + 2 < 6 is a linear inequation in one variable, x.

Clearly, any number less than 4 when added to 2 has a sum less than 6.

So, x is less than 4.

We say that the solutions of the inequation x + 2 < 6 are x < 4.

The form of a linear inequation in one variable is ax + b < c, where a, b and c are fixed numbers belonging to the set R.

If a, b and c are real numbers, then each of the following is called a linear inequation in one variable:

Similarly, ax + b > c             (‘>’ stands for “is greater than”)

ax + b ≥ c                           (‘≥’ stands for “is greater than or equal to”)

ax + b ≤ c                           (‘≤’ stands for “is less than or equal to”)

are linear inequation in one variable.

In an inequation, the signs ‘>’, ‘<’, ‘≥’ and ‘≤’ are called signs of inequality.


Let m and n be any two real numbers, then

1. m is less than n, written as m < n, if and only if n – m is positive. For example,

(i) 3 < 5, since 5 – 3 = 2 which is positive.

(ii) -5 < -2, since -2 – (- 5) = -2 + 5 = 3 which is positive.

(iii) 23 < 45, 4523 = 215 which is positive.


2. m is less than or equal to n, written as m ≤ n, if and only if n – m is either positive or zero. For example,

(i) -4 ≤ 7, since 7 – (-4) = 7 + 4 = 11 which is positive.

(ii) 5858, since 58 - 58 = 0.


3. m is greater than or equal to n, written as m ≥ n, if and only if m – n is either positive or zero. For example,

(i) 4 ≥ -6, since 4 – (-6) = 4 + 6 = 10 which is positive.

(ii) 5858, since 5858 = 0.


4. m is greater than n, written as m > n, if and only if m – n is positive. For example,

(i) 5 > 3, since 5 – 3 = 2 which is positive.

(ii) -8 > -12, since -8 – (- 12) = -8 + 12 = 4 which is positive.

(iii) 45 > 23, since 4523 = 215 which is positive.






10th Grade Math

From Linear Inequation in One Variable to HOME




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Average | Word Problem on Average | Questions on Average

    May 17, 25 05:37 PM

    In worksheet on average interest we will solve 10 different types of question. Find the average of first 10 prime numbers. The average height of a family of five is 150 cm. If the heights of 4 family

    Read More

  2. How to Find the Average in Math? | What Does Average Mean? |Definition

    May 17, 25 04:04 PM

    Average 2
    Average means a number which is between the largest and the smallest number. Average can be calculated only for similar quantities and not for dissimilar quantities.

    Read More

  3. Problems Based on Average | Word Problems |Calculating Arithmetic Mean

    May 17, 25 03:47 PM

    Here we will learn to solve the three important types of word problems based on average. The questions are mainly based on average or mean, weighted average and average speed.

    Read More

  4. Rounding Decimals | How to Round a Decimal? | Rounding off Decimal

    May 16, 25 11:13 AM

    Round off to Nearest One
    Rounding decimals are frequently used in our daily life mainly for calculating the cost of the items. In mathematics rounding off decimal is a technique used to estimate or to find the approximate

    Read More

  5. Worksheet on Rounding Off Number | Rounding off Number | Nearest 10

    May 15, 25 05:12 PM

    In worksheet on rounding off number we will solve 10 different types of problems. 1. Round off to nearest 10 each of the following numbers: (a) 14 (b) 57 (c) 61 (d) 819 (e) 7729 2. Round off to

    Read More