Linear Inequation in One Variable

We will discuss here about the linear inequation in one variable.


The mathematical statement which says that one quantity is not equal to another quantity is called an inequation.

For example: If m and n are two quantities such that m ≠ n; then any one of the following relations (conditions) will be true:

i.e., either (i) m > n

(ii) m ≥ n

(iii) m < n

Or, m ≤ n

Each of the four conditions, given above, is an inequation.




Consider the following statement:

“x is a number which when added to 2 gives a sum less than 6.”

The above sentence can be expressed as x + 2 < 6, where ‘<’ stands for “is less than”.

x + 2 < 6 is a linear inequation in one variable, x.

Clearly, any number less than 4 when added to 2 has a sum less than 6.

So, x is less than 4.

We say that the solutions of the inequation x + 2 < 6 are x < 4.

The form of a linear inequation in one variable is ax + b < c, where a, b and c are fixed numbers belonging to the set R.

If a, b and c are real numbers, then each of the following is called a linear inequation in one variable:

Similarly, ax + b > c             (‘>’ stands for “is greater than”)

ax + b ≥ c                           (‘≥’ stands for “is greater than or equal to”)

ax + b ≤ c                           (‘≤’ stands for “is less than or equal to”)

are linear inequation in one variable.

In an inequation, the signs ‘>’, ‘<’, ‘≥’ and ‘≤’ are called signs of inequality.


Let m and n be any two real numbers, then

1. m is less than n, written as m < n, if and only if n – m is positive. For example,

(i) 3 < 5, since 5 – 3 = 2 which is positive.

(ii) -5 < -2, since -2 – (- 5) = -2 + 5 = 3 which is positive.

(iii) \(\frac{2}{3}\) < \(\frac{4}{5}\), \(\frac{4}{5}\) – \(\frac{2}{3}\) = \(\frac{2}{15}\) which is positive.


2. m is less than or equal to n, written as m ≤ n, if and only if n – m is either positive or zero. For example,

(i) -4 ≤ 7, since 7 – (-4) = 7 + 4 = 11 which is positive.

(ii) \(\frac{5}{8}\) ≤ \(\frac{5}{8}\), since \(\frac{5}{8}\) - \(\frac{5}{8}\) = 0.


3. m is greater than or equal to n, written as m ≥ n, if and only if m – n is either positive or zero. For example,

(i) 4 ≥ -6, since 4 – (-6) = 4 + 6 = 10 which is positive.

(ii) \(\frac{5}{8}\) ≥ \(\frac{5}{8}\), since \(\frac{5}{8}\) – \(\frac{5}{8}\) = 0.


4. m is greater than n, written as m > n, if and only if m – n is positive. For example,

(i) 5 > 3, since 5 – 3 = 2 which is positive.

(ii) -8 > -12, since -8 – (- 12) = -8 + 12 = 4 which is positive.

(iii) \(\frac{4}{5}\) > \(\frac{2}{3}\), since \(\frac{4}{5}\) – \(\frac{2}{3}\) = \(\frac{2}{15}\) which is positive.






10th Grade Math

From Linear Inequation in One Variable to HOME




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Money | Conversion of Money from Rupees to Paisa

    Dec 03, 24 01:29 AM

    Worksheet on Money
    Practice the questions given in the worksheet on money. This sheet provides different types of questions where students need to express the amount of money in short form and long form

    Read More

  2. 2nd Grade Money Worksheet | Conversion of Money | Word Problems

    Dec 03, 24 01:19 AM

    Match the following Money
    In 2nd grade money worksheet we will solve the problems on writing amount in words and figures, conversion of money and word problems on money. 1. Write T for true and F for false. (i) Rs. is written…

    Read More

  3. Subtraction of Money | Subtraction with Conversion, without Conversion

    Dec 02, 24 01:47 PM

    Subtraction of Money
    In subtraction of money we will learn how to subtract the amounts of money involving rupees and paise to find the difference. We carryout subtraction with money the same way as in decimal numbers. Whi…

    Read More

  4. Word Problems on Addition of Money |Money Word Problems|Money Addition

    Dec 02, 24 01:26 PM

    Word Problems on Addition of Money
    Let us consider some of the word problems on addition of money. We have solved the problems in both the methods i.e., with conversion into paise and without conversion into paise. Worked-out examples

    Read More

  5. Addition of Money | Add The Amounts of Money Involving Rupees & Paisa

    Nov 29, 24 01:26 AM

    3rd Grade Addition of Money
    In addition of money we will learn how to add the amounts of money involving rupees and paisa together. We carryout with money the same way as in decimal numbers. While adding we need to follow that t…

    Read More