Loading [MathJax]/jax/output/HTML-CSS/jax.js

Subscribe to our YouTube channel for the latest videos, updates, and tips.


Introduction of Complex Numbers

The introduction of complex numbers plays a very important role in the theory of numbers.

The equations x2 + 5 = 0, x2 + 10 = 0, x2 = -1 are not solvable in the real number system i.e, these equations has no real roots.

For example, i is the solution of the equation x2 = -1 and it has two solutions i.e., x = ± i, where √-1.

The number i is called an imaginary number. Generally, the square root of any negative real number is called imaginary number.

The concept of imaginary numbers was first introduced by mathematician “Euler”. He was the one who introduced i (read as ‘iota’) to represent √-1. He also defined i2 = -1.

Definition of Complex number:

A complex number z is defined as an order pair of real numbers and is written as z = (a, b) or, z = a + ib, where a, b are real numbers and i = √-1.

In other words, in an ordered pair (a, b) of two real numbers a and b is represented by the symbol a + ib (where i = √-1) then the order pair (a, b) is called a complex number (or, an imaginary number).

Example of complex number:

3 + 2i, -1 + 5i, 7 – 2i, 2 + i√2, 1 + i, etc. are all complex numbers.


Real and imaginary part of a complex numbers:

According to the definition if the complex number (a, b) be denoted by z then z = (a, b) = a + ib (a, b ϵ R) where a is called the real part, denoted by Re(z) and b is called imaginary part, denoted by Im (z).

In other words, in z = a + ib (a, b ϵ R), if a = 0 and b = 1 then z = 0 + i ∙ 1 = i that is, i represents the unit of a complex quantity.

For this reason, the real number a is called the real part of the complex number z = a + ib and b is called its imaginary part.

In z = a + ib (a, b ϵ R), if b = 0 then z = (a, 0) = a + 0 ∙ i = a, (which is a real part) i.e., the complex number (a, 0) represents purely real number.

Again, in z = a + ib (a, b ϵ R), if a = 0 and b ≠ 0 then z = (0, b) = 0 + ib = ib which is called purely imaginary number

Therefore, a complex number z = a + ib (a, b ϵ R), reduces to a purely imaginary number when a = 0.

 

Equality of two complex numbers:

Two complex number z1 = a + ib and z2 = c + id

Two complex numbers z1 = (a, b) = a + ib and z2 = (c, d) = c + id are called equal, written as z1 = z2 if and only if a = c and b = d

In general, when real and imaginary parts of one of the complex number are respectively equal to the real and imaginary parts of the other complex number then they are equal.

For example, if the complex number z1 = x + iy and z2 = -8 + 3i are equal, then x = -8 and y = 3.


Note: Ordered pairs (a, b) and (b, a) represent two distinct complex numbers when a ≠ b.





11 and 12 Grade Math 

From Introduction of Complex Numbers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Average | Word Problem on Average | Questions on Average

    May 17, 25 05:37 PM

    In worksheet on average interest we will solve 10 different types of question. Find the average of first 10 prime numbers. The average height of a family of five is 150 cm. If the heights of 4 family

    Read More

  2. How to Find the Average in Math? | What Does Average Mean? |Definition

    May 17, 25 04:04 PM

    Average 2
    Average means a number which is between the largest and the smallest number. Average can be calculated only for similar quantities and not for dissimilar quantities.

    Read More

  3. Problems Based on Average | Word Problems |Calculating Arithmetic Mean

    May 17, 25 03:47 PM

    Here we will learn to solve the three important types of word problems based on average. The questions are mainly based on average or mean, weighted average and average speed.

    Read More

  4. Rounding Decimals | How to Round a Decimal? | Rounding off Decimal

    May 16, 25 11:13 AM

    Round off to Nearest One
    Rounding decimals are frequently used in our daily life mainly for calculating the cost of the items. In mathematics rounding off decimal is a technique used to estimate or to find the approximate

    Read More

  5. Worksheet on Rounding Off Number | Rounding off Number | Nearest 10

    May 15, 25 05:12 PM

    In worksheet on rounding off number we will solve 10 different types of problems. 1. Round off to nearest 10 each of the following numbers: (a) 14 (b) 57 (c) 61 (d) 819 (e) 7729 2. Round off to

    Read More