Subscribe to our YouTube channel for the latest videos, updates, and tips.


Integral Powers of a Complex Number

Integral power of a complex number is also a complex number. In other words any integral power of a complex number can be expressed in the form of A + iB, where A and B are real.

If z is any complex number, then positive integral powers of z are defined as z\(^{1}\) = a, z\(^{2}\) = z  z, z\(^{3}\) = z\(^{2}\)  z, z\(^{4}\) = z\(^{3}\)  z and so on.

If z is any non-zero complex number, then negative integral powers of z are defined as:

z\(^{-1}\) = \(\frac{1}{z}\), z\(^{-2}\) = \(\frac{1}{z^{2}}\), z\(^{-3}\) = \(\frac{1}{z^{3}}\), etc.

If z ≠ 0, then z\(^{0}\) = 1.

Integral Power of:

Any integral power of i is i or, (-1) or 1.

Integral power of i are defined as:

i\(^{0}\) = 1, i\(^{1}\) = i, i\(^{2}\) = -1,

i\(^{3}\) = i\(^{2}\) i = (-1)i = -i,

i\(^{4}\) = (i\(^{2}\))\(^{2}\) = (-1)\(^{2}\) = 1,

i\(^{5}\) = i\(^{4}\) i = 1 i = i,

i\(^{6}\) = i\(^{4}\) i\(^{2}\) = 1 (-1) = -1, and so on.

i\(^{-1}\) = \(\frac{1}{i}\) = \(\frac{1}{i}\) × \(\frac{i}{i}\) = \(\frac{i}{-1}\) = - i

Remember that \(\frac{1}{i}\) = - i

i\(^{-1}\) = \(\frac{1}{i^{2}}\) = \(\frac{1}{-1}\) = -1

i\(^{-3}\) = \(\frac{1}{i^{3}}\) = \(\frac{1}{i^{3}}\) × \(\frac{i}{i}\) = \(\frac{i}{i^{4}}\) = \(\frac{i}{1}\) = i

i\(^{-4}\) = \(\frac{1}{i^{4}}\) = \(\frac{1}{1}\) = 1, and so on.

Note that i\(^{4}\) = 1 and i\(^{-4}\) = 1. It follows that for any integer k,

i\(^{4k}\) = 1, i\(^{4k + 1}\)= i, i\(^{4k + 2}\) = -1, i\(^{4k + 3}\) = - i.


Solved examples on integral powers of a complex number:

1. Express i\(^{109}\) in the form of a + ib.

Solution:

i\(^{109}\)

= i\(^{4 × 27 + 1}\)

= i, [Since, we know that for any integer k, i\(^{4k + 1}\) = i]

= 0 + i, which is the required form of a + ib.


2. Simplify the expression i\(^{35}\) + \(\frac{1}{i^{35}}\) in the form of a + ib.

Solution:

i\(^{35}\) + \(\frac{1}{i^{35}}\)

= i\(^{35}\) + i\(^{-35}\)

= i\(^{4 × 8 + 3}\) + i\(^{4 × (-9) + 1}\)

= 0 + 0

= 0

= 0 + i0, which is the required form of a + ib.


3. Express (1 - i)\(^{4}\) in the standard form a + ib.

Solution:

(1 - i)\(^{4}\)

= [(1 - i)\(^{2}\)]\(^{2}\)

= [1 + i\(^{2}\) - 2i]\(^{2}\)

= (1 + (-1) – 2i)\(^{2}\)

= (-2i)\(^{2}\)

= 4i\(^{2}\)

= 4(-1)

= -4

= -4 + i0, which is the required standard form a + ib.




11 and 12 Grade Math 

From Integral Powers of a Complex Number to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Rounding Decimals | Questions Related to Round a Decimal

    May 14, 25 04:21 PM

    The worksheet on rounding decimals would be really good for the students to practice huge number of questions related to round a decimal. This worksheet include questions related

    Read More

  2. Rounding Decimals | How to Round a Decimal? | Rounding off Decimal

    May 14, 25 03:01 PM

    Rounding decimals are frequently used in our daily life mainly for calculating the cost of the items. In mathematics rounding off decimal is a technique used to estimate or to find the approximate

    Read More

  3. Worksheet on Rounding Off Number | Rounding off Number | Nearest 10

    May 14, 25 12:50 PM

    In worksheet on rounding off number we will solve 10 different types of problems. 1. Round off to nearest 10 each of the following numbers: (a) 14 (b) 57 (c) 61 (d) 819 (e) 7729 2. Round off to

    Read More

  4. Rounding Off to the Nearest Whole Number | Nearest 10, 100, and 1000

    May 13, 25 03:43 PM

    Nearest Ten
    Here we will learn how to rounding off to the nearest whole number?

    Read More

  5. Conversion of Improper Fractions into Mixed Fractions |Solved Examples

    May 12, 25 04:52 AM

    Conversion of Improper Fractions into Mixed Fractions
    In conversion of improper fractions into mixed fractions, we follow the following steps: Step I: Obtain the improper fraction. Step II: Divide the numerator by the denominator and obtain the quotient…

    Read More