# H.C.F. of Polynomials by Long Division Method

Now we will learn how to find the H.C.F. of polynomials by long division method.

Step of the method:

(i) At first, the given expressions are to be arranged in the descending order of powers of any of its variables.

(ii) Then if any common factor is present in the terms of each expression, it should be taken out. At the time of determination of final H.C.F., the H.C.F. of these taken out factors are to be multiplied with the H.C.F. obtained by the method of division.

(iii) Like the determination of H.C.F. by the method of division in arithmetic, here also as the division is not complete, in every step the divisor of that step is to be divided by the remainder obtained. At any stage, if any common factor is present in the remainder that should be taken out, then the division in the next step becomes easier.

(iv) In every step, the term in the quotient should be found by comparing the first term of the dividend with the first term of the divisor. Sometimes, if necessary, the dividend may be multiplied by a multiplier of a factor.

1. Find the H.C.F. of 4a4 + 40a2 – 20a3 – 32a and 2a4 – 12a – 8a3 + 14a2 by using the long division method.

Solution:

(i) By arranging the two polynomials in the descending order of powers of x we get,

4a4 – 20a3 + 40a2 – 32a and 2a4 – 8a3 + 14a2 – 12a

(ii) By taking out the common factors from the terms of the expressions we get,
 4a4 – 20a3 + 40a2 – 32a = 4a(a3 – 5a2 + 10a – 8) 2a4 – 8a3 + 14a2– 12a = 2a(a3 – 4a2 + 7a – 6)

At the time of writing the final result the H.C.F. of 4a and 2a i.e. 2a is to be multiplied with the divisor of the last step.

(iii)

Therefore, the H.C.F. of 4a4 + 40a2 – 20a3 – 32a and 2a4 – 12a – 8a3 + 14a2 is 2a(a – 2)

2. Find the H.C.F. of 6m3 – 17m2 – 5m + 6, 6m3 – 5m2 – 3m + 2 and 3m3 – 7m2 + 4 by using long division method.

Solution:

It can be seen that the three expressions are arranged in the descending order of the powers of the variable ‘a’ and their terms have no common factors between them. So, by the long division method

The H.C.F. of the first two expressions is 6m2 + m – 2.

Now, it is to be seen whether the third expression is divisible by 6m2 + m – 2 or not. If it is not, then the H.C.F. of them is to be determined by the division method.
Therefore, the H.C.F. of 6m3 – 17m2 – 5m + 6, 6m3 – 5m2 – 3m + 2 and 3m3 – 7m2 + 4 is (3m + 2)

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

## Recent Articles

1. ### Thousandths Place in Decimals | Decimal Place Value | Decimal Numbers

Jul 20, 24 03:45 PM

When we write a decimal number with three places, we are representing the thousandths place. Each part in the given figure represents one-thousandth of the whole. It is written as 1/1000. In the decim…

2. ### Hundredths Place in Decimals | Decimal Place Value | Decimal Number

Jul 20, 24 02:30 PM

When we write a decimal number with two places, we are representing the hundredths place. Let us take plane sheet which represents one whole. Now, we divide the sheet into 100 equal parts. Each part r…

3. ### Tenths Place in Decimals | Decimal Place Value | Decimal Numbers

Jul 20, 24 12:03 PM

The first place after the decimal point is tenths place which represents how many tenths are there in a number. Let us take a plane sheet which represents one whole. Now, divide the sheet into ten equ…

4. ### Representing Decimals on Number Line | Concept on Formation of Decimal

Jul 20, 24 10:38 AM

Representing decimals on number line shows the intervals between two integers which will help us to increase the basic concept on formation of decimal numbers.

5. ### Decimal Place Value Chart |Tenths Place |Hundredths Place |Thousandths

Jul 20, 24 01:11 AM

Decimal place value chart are discussed here: The first place after the decimal is got by dividing the number by 10; it is called the tenths place.