Formation of the Quadratic Equation whose Roots are Given

We will learn the formation of the quadratic equation whose roots are given.

To form a quadratic equation, let α and β be the two roots.

Let us assume that the required equation be ax\(^{2}\) + bx + c = 0 (a ≠ 0).

According to the problem, roots of this equation are α and β.

Therefore,

α + β = - \(\frac{b}{a}\) and αβ = \(\frac{c}{a}\).

Now, ax\(^{2}\) + bx + c = 0

⇒ x\(^{2}\) + \(\frac{b}{a}\)x + \(\frac{c}{a}\) = 0 (Since, a ≠ 0)

⇒ x\(^{2}\) - (α + β)x + αβ = 0, [Since, α + β = -\(\frac{b}{a}\) and αβ = \(\frac{c}{a}\)]

⇒ x\(^{2}\) - (sum of the roots)x + product of the roots = 0

⇒ x\(^{2}\) - Sx + P = 0, where S = sum of the roots and P = product of the roots ............... (i)

Formula (i) is used for the formation of a quadratic equation when its roots are given.

For example suppose we are to form the quadratic equation whose roots are 5 and (-2). By formula (i) we get the required equation as

x\(^{2}\) - [5 + (-2)]x + 5 (-2) = 0

⇒ x\(^{2}\) - [3]x + (-10) = 0

⇒ x\(^{2}\) - 3x - 10 = 0


Solved examples to form the quadratic equation whose roots are given:

1. Form an equation whose roots are 2, and - \(\frac{1}{2}\).

Solution:

The given roots are 2 and -\(\frac{1}{2}\).

Therefore, sum of the roots, S = 2 + (-\(\frac{1}{2}\)) = \(\frac{3}{2}\)

And tghe product of the given roots, P = 2 -\(\frac{1}{2}\) = - 1.

Therefore, the required equation is x\(^{2}\) – Sx + p

i.e., x\(^{2}\) - (sum of the roots)x + product of the roots = 0

i.e., x\(^{2}\) - \(\frac{3}{2}\)x – 1 = 0

i.e, 2x\(^{2}\) - 3x - 2 = 0


2. Find the quadratic equation with rational coefficients which has \(\frac{1}{3 + 2√2}\) as a root.

Solution:

According to the problem, coefficients of the required quadratic equation are rational and its one root is \(\frac{1}{3 + 2√2}\) = \(\frac{1}{3 + 2√2}\) ∙ \(\frac{3 - 2√2}{3 - 2√2}\) = \(\frac{3 - 2√2}{9 - 8}\) = 3 - 2√2.

We know in a quadratic with rational coefficients irrational roots occur in conjugate pairs).

Since equation has rational coefficients, the other root is 3 + 2√2.

Now, the sum of the roots of the given equation S = (3 - 2√2) + (3 + 2√2) = 6

Product of the roots, P = (3 - 2√2)(3 + 2√2) = 3\(^{2}\) - (2√2)\(^{2}\) = 9 - 8 = 1

Hence, the required equation is x\(^{2}\) - Sx + P = 0 i.e., x\(^{2}\) - 6x + 1 = 0.


2. Find the quadratic equation with real coefficients which has -2 + i as a root (i = √-1).

Solution:

According to the problem, coefficients of the required quadratic equation are real and its one root is -2 + i.

We know in a quadratic with real coefficients imaginary roots occur in conjugate pairs).

Since equation has rational coefficients, the other root is -2 - i

Now, the sum of the roots of the given equation S = (-2 + i) + (-2 - i) = -4

Product of the roots, P = (-2 + i)(-2 - i) = (-2)\(^{2}\) - i\(^{2}\) = 4 - (-1) = 4 + 1 = 5

Hence, the required equation is x\(^{2}\) - Sx + P = 0 i.e., x\(^{2}\) - 4x + 5 = 0.





11 and 12 Grade Math 

From Formation of the Quadratic Equation whose Roots are Given to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Decimal Place Value Chart |Tenths Place |Hundredths Place |Thousandths

    Jul 19, 24 03:26 PM

    Decimal place value chart
    Decimal place value chart are discussed here: The first place after the decimal is got by dividing the number by 10; it is called the tenths place.

    Read More

  2. Definition of Decimal Numbers | Decimal Part | Decimal Point |Examples

    Jul 19, 24 11:13 AM

    Decimal Numbers
    Definition of decimal numbers: We have learnt that the decimals are an extension of our number system. We also know that decimals can be considered as fractions whose denominators are 10, 100, 1000

    Read More

  3. Addition and Subtraction of Fractions | Solved Examples | Worksheet

    Jul 19, 24 02:00 AM

    Addition and subtraction of fractions are discussed here with examples. To add or subtract two or more fractions, proceed as under: (i) Convert the mixed fractions (if any.) or natural numbers

    Read More

  4. Fractions in Descending Order |Arranging Fractions an Descending Order

    Jul 19, 24 02:00 AM

    We will discuss here how to arrange the fractions in descending order. Solved examples for arranging in descending order: 1. Arrange the following fractions 5/6, 7/10, 11/20 in descending order. First…

    Read More

  5. Fractions in Ascending Order | Arranging Fractions | Worksheet |Answer

    Jul 19, 24 01:59 AM

    Comparison Fractions
    We will discuss here how to arrange the fractions in ascending order. Solved examples for arranging in ascending order: 1. Arrange the following fractions 5/6, 8/9, 2/3 in ascending order. First we fi…

    Read More