Formation of the Quadratic Equation whose Roots are Given

We will learn the formation of the quadratic equation whose roots are given.

To form a quadratic equation, let α and β be the two roots.

Let us assume that the required equation be ax\(^{2}\) + bx + c = 0 (a ≠ 0).

According to the problem, roots of this equation are α and β.

Therefore,

α + β = - \(\frac{b}{a}\) and αβ = \(\frac{c}{a}\).

Now, ax\(^{2}\) + bx + c = 0

⇒ x\(^{2}\) + \(\frac{b}{a}\)x + \(\frac{c}{a}\) = 0 (Since, a ≠ 0)

⇒ x\(^{2}\) - (α + β)x + αβ = 0, [Since, α + β = -\(\frac{b}{a}\) and αβ = \(\frac{c}{a}\)]

⇒ x\(^{2}\) - (sum of the roots)x + product of the roots = 0

⇒ x\(^{2}\) - Sx + P = 0, where S = sum of the roots and P = product of the roots ............... (i)

Formula (i) is used for the formation of a quadratic equation when its roots are given.

For example suppose we are to form the quadratic equation whose roots are 5 and (-2). By formula (i) we get the required equation as

x\(^{2}\) - [5 + (-2)]x + 5 (-2) = 0

⇒ x\(^{2}\) - [3]x + (-10) = 0

⇒ x\(^{2}\) - 3x - 10 = 0


Solved examples to form the quadratic equation whose roots are given:

1. Form an equation whose roots are 2, and - \(\frac{1}{2}\).

Solution:

The given roots are 2 and -\(\frac{1}{2}\).

Therefore, sum of the roots, S = 2 + (-\(\frac{1}{2}\)) = \(\frac{3}{2}\)

And tghe product of the given roots, P = 2 -\(\frac{1}{2}\) = - 1.

Therefore, the required equation is x\(^{2}\) – Sx + p

i.e., x\(^{2}\) - (sum of the roots)x + product of the roots = 0

i.e., x\(^{2}\) - \(\frac{3}{2}\)x – 1 = 0

i.e, 2x\(^{2}\) - 3x - 2 = 0


2. Find the quadratic equation with rational coefficients which has \(\frac{1}{3 + 2√2}\) as a root.

Solution:

According to the problem, coefficients of the required quadratic equation are rational and its one root is \(\frac{1}{3 + 2√2}\) = \(\frac{1}{3 + 2√2}\) ∙ \(\frac{3 - 2√2}{3 - 2√2}\) = \(\frac{3 - 2√2}{9 - 8}\) = 3 - 2√2.

We know in a quadratic with rational coefficients irrational roots occur in conjugate pairs).

Since equation has rational coefficients, the other root is 3 + 2√2.

Now, the sum of the roots of the given equation S = (3 - 2√2) + (3 + 2√2) = 6

Product of the roots, P = (3 - 2√2)(3 + 2√2) = 3\(^{2}\) - (2√2)\(^{2}\) = 9 - 8 = 1

Hence, the required equation is x\(^{2}\) - Sx + P = 0 i.e., x\(^{2}\) - 6x + 1 = 0.


2. Find the quadratic equation with real coefficients which has -2 + i as a root (i = √-1).

Solution:

According to the problem, coefficients of the required quadratic equation are real and its one root is -2 + i.

We know in a quadratic with real coefficients imaginary roots occur in conjugate pairs).

Since equation has rational coefficients, the other root is -2 - i

Now, the sum of the roots of the given equation S = (-2 + i) + (-2 - i) = -4

Product of the roots, P = (-2 + i)(-2 - i) = (-2)\(^{2}\) - i\(^{2}\) = 4 - (-1) = 4 + 1 = 5

Hence, the required equation is x\(^{2}\) - Sx + P = 0 i.e., x\(^{2}\) - 4x + 5 = 0.





11 and 12 Grade Math 

From Formation of the Quadratic Equation whose Roots are Given to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 13, 24 08:43 AM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  2. Patterns in Math | Missing Number | Counting Numbers | Worksheets

    Dec 13, 24 12:31 AM

    Finding patterns in math is very important to understand the sequence in the series. We need to find the exact missing number that from the group of numbers. The counting numbers may be counting

    Read More

  3. Concept of Pattern | Similar Patterns in Mathematics | Similar Pattern

    Dec 12, 24 11:22 PM

    Patterns in Necklace
    Concept of pattern will help us to learn the basic number patterns and table patterns. Animals such as all cows, all lions, all dogs and all other animals have dissimilar features. All mangoes have si…

    Read More

  4. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 12, 24 10:31 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  5. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More