Formation of the Quadratic Equation whose Roots are Given

We will learn the formation of the quadratic equation whose roots are given.

To form a quadratic equation, let α and β be the two roots.

Let us assume that the required equation be ax\(^{2}\) + bx + c = 0 (a ≠ 0).

According to the problem, roots of this equation are α and β.

Therefore,

α + β = - \(\frac{b}{a}\) and αβ = \(\frac{c}{a}\).

Now, ax\(^{2}\) + bx + c = 0

⇒ x\(^{2}\) + \(\frac{b}{a}\)x + \(\frac{c}{a}\) = 0 (Since, a ≠ 0)

⇒ x\(^{2}\) - (α + β)x + αβ = 0, [Since, α + β = -\(\frac{b}{a}\) and αβ = \(\frac{c}{a}\)]

⇒ x\(^{2}\) - (sum of the roots)x + product of the roots = 0

⇒ x\(^{2}\) - Sx + P = 0, where S = sum of the roots and P = product of the roots ............... (i)

Formula (i) is used for the formation of a quadratic equation when its roots are given.

For example suppose we are to form the quadratic equation whose roots are 5 and (-2). By formula (i) we get the required equation as

x\(^{2}\) - [5 + (-2)]x + 5 (-2) = 0

⇒ x\(^{2}\) - [3]x + (-10) = 0

⇒ x\(^{2}\) - 3x - 10 = 0


Solved examples to form the quadratic equation whose roots are given:

1. Form an equation whose roots are 2, and - \(\frac{1}{2}\).

Solution:

The given roots are 2 and -\(\frac{1}{2}\).

Therefore, sum of the roots, S = 2 + (-\(\frac{1}{2}\)) = \(\frac{3}{2}\)

And tghe product of the given roots, P = 2 -\(\frac{1}{2}\) = - 1.

Therefore, the required equation is x\(^{2}\) – Sx + p

i.e., x\(^{2}\) - (sum of the roots)x + product of the roots = 0

i.e., x\(^{2}\) - \(\frac{3}{2}\)x – 1 = 0

i.e, 2x\(^{2}\) - 3x - 2 = 0


2. Find the quadratic equation with rational coefficients which has \(\frac{1}{3 + 2√2}\) as a root.

Solution:

According to the problem, coefficients of the required quadratic equation are rational and its one root is \(\frac{1}{3 + 2√2}\) = \(\frac{1}{3 + 2√2}\) ∙ \(\frac{3 - 2√2}{3 - 2√2}\) = \(\frac{3 - 2√2}{9 - 8}\) = 3 - 2√2.

We know in a quadratic with rational coefficients irrational roots occur in conjugate pairs).

Since equation has rational coefficients, the other root is 3 + 2√2.

Now, the sum of the roots of the given equation S = (3 - 2√2) + (3 + 2√2) = 6

Product of the roots, P = (3 - 2√2)(3 + 2√2) = 3\(^{2}\) - (2√2)\(^{2}\) = 9 - 8 = 1

Hence, the required equation is x\(^{2}\) - Sx + P = 0 i.e., x\(^{2}\) - 6x + 1 = 0.


2. Find the quadratic equation with real coefficients which has -2 + i as a root (i = √-1).

Solution:

According to the problem, coefficients of the required quadratic equation are real and its one root is -2 + i.

We know in a quadratic with real coefficients imaginary roots occur in conjugate pairs).

Since equation has rational coefficients, the other root is -2 - i

Now, the sum of the roots of the given equation S = (-2 + i) + (-2 - i) = -4

Product of the roots, P = (-2 + i)(-2 - i) = (-2)\(^{2}\) - i\(^{2}\) = 4 - (-1) = 4 + 1 = 5

Hence, the required equation is x\(^{2}\) - Sx + P = 0 i.e., x\(^{2}\) - 4x + 5 = 0.





11 and 12 Grade Math 

From Formation of the Quadratic Equation whose Roots are Given to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Converting Fractions to Decimals | Solved Examples | Free Worksheet

    Apr 28, 25 01:43 AM

    Converting Fractions to Decimals
    In converting fractions to decimals, we know that decimals are fractions with denominators 10, 100, 1000 etc. In order to convert other fractions into decimals, we follow the following steps:

    Read More

  2. Expanded Form of a Number | Writing Numbers in Expanded Form | Values

    Apr 27, 25 10:13 AM

    Expanded Form of a Number
    We know that the number written as sum of the place-values of its digits is called the expanded form of a number. In expanded form of a number, the number is shown according to the place values of its…

    Read More

  3. Converting Decimals to Fractions | Solved Examples | Free Worksheet

    Apr 26, 25 04:56 PM

    Converting Decimals to Fractions
    In converting decimals to fractions, we know that a decimal can always be converted into a fraction by using the following steps: Step I: Obtain the decimal. Step II: Remove the decimal points from th…

    Read More

  4. Worksheet on Decimal Numbers | Decimals Number Concepts | Answers

    Apr 26, 25 03:48 PM

    Worksheet on Decimal Numbers
    Practice different types of math questions given in the worksheet on decimal numbers, these math problems will help the students to review decimals number concepts.

    Read More

  5. Multiplication Table of 4 |Read and Write the Table of 4|4 Times Table

    Apr 26, 25 01:00 PM

    Multiplication Table of Four
    Repeated addition by 4’s means the multiplication table of 4. (i) When 5 candle-stands having four candles each. By repeated addition we can show 4 + 4 + 4 + 4 + 4 = 20 Then, four 5 times

    Read More