Factorization when Monomial is Common

In factorization when monomial is common factor we know, that an algebraic expression is the sum or the difference of monomials.

In order to factorize follow the following steps:

Step 1: Write the algebraic expression.

Step 2: Find the HCF of all the terms of the given algebraic expression.

Step 3:  Express each terms of the algebraic expression as the product of H.C.F and the quotient when it is divided by the H.C.F.

i.e. divide each term of the given expression by the HCF.

Step 4:  Now use distributive property of multiplication over addition or subtraction to express the algebraic expression as the product of H.C.F and the quotient of the expression divided by the H.C.F.

i.e. write the given expression as the product of this HCF and the quotient obtained in step 2. 

Step 5:  Keep the H.C.F. outside the bracket and the quotients obtained within the bracket.


Solved examples of factorization when monomial is common:

1. Factorize each of the following: 

(i) 5x + 20

Solution: 

5x + 20

= 5(x + 4)


(ii) 2n2 + 3n

Solution:

2n2 + 3n

= n(2n + 3)


(iii) 3x2y - 6xy2

Solution:

3x2y - 6xy2

= 3xy(x - 2y)

(iv) 6ab - 9bc

Solution:


6ab - 9bc

= 3b(2a - 3c)


2. Factorize 6a2b2c + 27abc.

Solution:

The H.C.F. of 6a2b2c and 27abc = (H.C.F. of 6 and 27) × (H.C.F. of a2b2c and abc)

The H.C.F. of 6 and 27 = 3

The H.C.F. of a2b2c and abc = abc

Therefore, the H.C.F. of 6a2b2c and 27abc is 3abc.

Now, 6a2b2c + 27abc = \(3abc(\frac{6a^{2}b^{2}c}{3abc} - \frac{27abc}{3abc})\)

                              = 3abc(2ab + 9)

Therefore, the factor of 6a2b2c + 27abc are 3abc and (2ab + 9).



3. Factorize the expression:

18a3 - 27a2b

Solution:

18a3 - 27a2b

HCF of 18a3 and 27a2b is 9a2.

Therefore, 18a3 - 27a2b = 9a2(2a - 3b).





8th Grade Math Practice

From Factorization when Monomial is Common to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Adding 1-Digit Number | Understand the Concept one Digit Number

    Sep 17, 24 02:25 AM

    Add by Counting Forward
    Understand the concept of adding 1-digit number with the help of objects as well as numbers.

    Read More

  2. Counting Before, After and Between Numbers up to 10 | Number Counting

    Sep 17, 24 01:47 AM

    Before After Between
    Counting before, after and between numbers up to 10 improves the child’s counting skills.

    Read More

  3. Worksheet on Three-digit Numbers | Write the Missing Numbers | Pattern

    Sep 17, 24 12:10 AM

    Reading 3-digit Numbers
    Practice the questions given in worksheet on three-digit numbers. The questions are based on writing the missing number in the correct order, patterns, 3-digit number in words, number names in figures…

    Read More

  4. Arranging Numbers | Ascending Order | Descending Order |Compare Digits

    Sep 16, 24 11:24 PM

    Arranging Numbers
    We know, while arranging numbers from the smallest number to the largest number, then the numbers are arranged in ascending order. Vice-versa while arranging numbers from the largest number to the sma…

    Read More

  5. Worksheet on Tens and Ones | Math Place Value |Tens and Ones Questions

    Sep 16, 24 02:40 PM

    Tens and Ones
    In math place value the worksheet on tens and ones questions are given below so that students can do enough practice which will help the kids to learn further numbers.

    Read More