Subscribe to our YouTube channel for the latest videos, updates, and tips.


Factorization of Perfect Square

In factorization of perfect square we will learn how to factor different types of algebraic expressions using the following identities.

(i) a2 + 2ab + b2 = (a + b)2 = (a + b) (a + b)

(ii) a2 - 2ab + b2 = (a - b)2 = (a - b) (a - b)

Solved examples on factorization of perfect square:

1. Factorize  the perfect square completely:

(i) 4x2 + 9y2 + 12xy

Solution:

First we arrange the given expression 4x2 + 9y2 + 12xy in the form of a2 + 2ab + b2.



4x2 + 12xy + 9y2

= (2x)2 + 2 (2x) (3y) + (3y)2

Now applying the formula of a2 + 2ab + b2 = (a + b)2 then we get,

= (2x + 3y)2

= (2x + 3y) (2x + 3y)


(ii) 25x2 – 10xz + z2

Solution:

We can express the given expression 25x2 – 10xz + z2 as a2 - 2ab + b2

= (5x)2 – 2 (5x) (z) + (z)2

Now we will apply the formula of a2- 2ab + b2 = (a - b)2 then we get,

= (5x – z)2

= (5x – z)(5x – z)


(iii) x2 + 6x + 8

Solution:

We can that the given expression is not a perfect square. To get the expression as a perfect square we need to add 1 at the same time subtract 1 to keep the expression unchanged.

= x2 + 6x + 8 + 1 - 1

= x2 + 6x + 9 – 1

= [(x)2 + 2 (x) (3) + (3)2] – (1)2

= (x + 3)2 - (1)2

= (x + 3 + 1)(x + 3 - 1) 

= (x + 4)(x + 2)



2. Factor using the identity:

(i) 4m4 + 1

Solution:

4m4 + 1

To get the above expression in the form of a2 + 2ab + b2 we need to add 4m2 and to keep the expression same we also need to subtract 4m2 at the same time so that the expression remain same.

= 4m4 + 1 + 4m2 - 4m2

= 4m4 + 4m2 + 1 – 4m2, rearranged the terms

= (2m2)2 + 2 (2m2) (1) + (1)2 – 4m2

Now we apply the formula of a2 + 2ab + b2 = (a + b)2

= (2m2 + 1)2 - 4m2

= (2m2 + 1)2 - (2m)2

= (2m2 + 1 + 2m) (2m2 + 1 – 2m)

= (2m2 + 2m + 1) (2m2 – 2m + 1)


(ii) (x + 2y)2 + 2(x + 2y) (3y – x) + (3y - x)2

Solution:

We see that the given expression (x + 2y)2 + 2(x + 2y) (3y – x) + (3y - x)2 is in the form of a2 + 2ab + b2.

Here, a = x + 2y and b = 3y – x

Now we will apply the formula of a2 + 2ab + b2 = (a + b)2 then we get,

[(x + 2y) + (3y – x)]2

= [x + 2y + 3y – x]2

= [5y]2

= 25y2





8th Grade Math Practice

From Factorization of Perfect Square to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Conversion of Temperature | Temperature Worksheets | Ans

    Jun 24, 25 02:20 AM

    Worksheet on Conversion of Temperature
    We will practice the questions given in the worksheet on conversion of temperature from one scale into another. We know the two different temperature scales are the Fahrenheit scale and the

    Read More

  2. Worksheet on Temperature |Celsius to Fahrenheit, Fahrenheit to Celsius

    Jun 24, 25 01:58 AM

    Worksheet on Temperature
    In the worksheet on temperature we will solve 10 different types of questions.1. Which is colder 32°F or 0°C? 2. Water boils at ...°C and freezes at ....°F.

    Read More

  3. 5th Grade Temperature | Fahrenheit Scale | Celsius Scale | Thermometer

    Jun 24, 25 12:28 AM

    Mercury Thermometer
    We will discuss here about the concept of temperature. We have already learned about various types of measurements like length, mass capacity and time. But if we have fever, non of these measurements

    Read More

  4. Converting the Temperature from Fahrenheit to Celsius | Examples

    Jun 20, 25 12:53 PM

    In converting the temperature from Fahrenheit to Celsius the formula is, C = (5/9)(F - 32); The steps of converting from Fahrenheit to Celsius are reversed here.

    Read More

  5. Converting the Temperature from Celsius to Fahrenheit | Examples

    Jun 20, 25 12:01 PM

    In converting the temperature from Celsius to Fahrenheit the formula is F = (9/5)C + 32. Steps of converting from Celsius (°C) to Fahrenheit (°F)

    Read More