Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

Factorization of Expressions of the Form ax\(^{2}\) + bx + c, a β‰  1

The below examples show that the method of factorizing ax2 + bx + c by breaking the middle term involves the following steps.

Steps:

1.Take the product of the constant term and the coefficient of x2, i.e., ac.

2. Break ac into two factors p, q whose sum is b, i.e., p + q = b.

3. Pair one of them, say px, with ax^2 and the other, qx, with c. Then factorize the expression.

Solved Examples on Factorization of Expressions of the Form ax^2 + bx + c, a β‰  1:

1. Factorize: 6m2 + 7m + 2.

Solution:

Here, 6 Γ— 2 = 12 = 3 Γ— 4 and, 3 + 4 = 7 (= coefficient of m).

Therefore, 6m2 + 7m + 2 = 6m2 + 3m + 4m + 2

                                      = 3m(2m + 1) + 2(2m + 1)

                                      = (2m + 1)(3m + 2)

 

2. Factorize: 1 – 18x – 63x2

Solution:

The given expression is – 63x2 - 18x + 1

Here, (-63) Γ— 1 = -63 = (-21) Γ— (3), and -21 + 3 = -18(= coefficient of x).

Therefore, – 63x2 - 18x + 1 = – 63x2 – 21x + 3x + 1

                                         = -21x(3x + 1) + 1(3x + 1)

                                         = (3x + 1)(-21x + 1)

                                         = (1 + 3x)(1 – 21x).


3. Factorize: 6x2 – 7x – 5.

Solution:

6  Γ— (-5) = -30 = (-10) Γ— (3), and -10 + 3 = - 7 (= coefficient of x).

Therefore, 6x2 – 7x – 5 = 6x2 – 10x + 3x – 5

                                   = 2x(3x – 5) + 1(3x – 5)

                                   = (3x – 5)(2x + 1)


4. Factorize: 30m2 + 103mn – 7n2

Solution:

30  Γ— (-7) = -210 = (105) Γ— (-2), and 105 + (-2) = 103 (= coefficient of mn).

Therefore the given expression, 30m2 + 103mn – 7n2

                                          = 30m2 + 105mn – 2mn – 7n2

                                          = 15m(2m + 7n) – n(2m + 7n)

                                          = (2m + 7n)(15m – n)






9th Grade Math

From Factorization of Expressions of the Form ax^2 + bx + c, a β‰  1 to HOME PAGE


Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?