Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

Factorization of Expressions of the Form a^3 - b^3

Here we will learn the process of Factorization of Expressions of the Form a^3 - b^3.

We know that (a - b)^3 = a^3 - b^3 - 3ab(a - b), and so

a^3 - b^3 = (a - b)^3 + 3ab(a - b) = (a - b){(a - b)^2 + 3ab}


Therefore, a3 - b3 = (a - b)(a2 + ab + b2)

Solved Examples on Factorization of Expressions of the Form a^3 - b^3

1. Factorize: 64m^6 – n^6

Solution:

Here, given expression = 64m^6 – n^6

                                  = 2^6 βˆ™ m^6 – n^6

                                  = (2^3m^3)^2 – (n^3)^2

                                  = (2^3m^3 + n^3)(2^3m^3 – n^3)


Now, 2^3m^3 + n^3 = (2m)^3 + n^3

                                = (2m + n){(2m)^2 – 2m βˆ™ n + n^2}

                                = (2m + n)(4m^2 – 2mn + n^2).


Again, 2^3m^3 – n^3 = (2m)^3 - n^3

                                  = (2m - n){(2m)^2 + 2m βˆ™ n + n^2}

                                  = (2m - n)(4m^2 + 2mn + n^2).

Therefore, given expression = (2m + n)(4m^2 – 2mn + n^2) βˆ™ (2m - n)(4m^2 + 2mn + n^2)

                                         = (2m + n)(2m - n)(4m^2 – 2mn + n^2) (4m^2 + 2mn + n^2).

 

2. Factorize: 8x^3 - 27

Solution:

Here, given expression = 8x^3 - 27

                                  = (2x)^3 - 3^3

                                  = (2x - 3){(2x)^2 + 2x βˆ™ 3 + 3^2}

                                  = (2x - 3)(4x^2 + 6x + 9)


3. Factorize: 64x^6 – y^6

Solution:

Here, given expression = 64x^6 – y^6

                                  = (4x^2)^3 – (y^2)^3

                                  = (4x^2 – y^2){(4x^2)^2 + 4x^2  βˆ™ y^2 + (y^2)^2}

                                  = {(2x)^2 – y^2}(16x^4 + 4x^2y^2 + y^4)

                                  = (2x + y)(2x – y)(16x^4 + 8x^2y^2 + y^4 – 4x^2y^2)

                                  = (2x + y)(2x – y){(4x^2)^2 + 2 βˆ™ (4x^2)y^2 + (y^2)^2 – 4x^2y^2}

                                  = (2x + y)(2x – y){(4x^2 + y^2)^2 – (2xy)^2}

                                  = (2x + y)(2x – y)(4x^2 + y^2 + 2xy)(4x^2 + y^2 – 2xy)

 

Alternative Method:

Given expression = 64x^6 – y^6

                          = (8x^3)^2 – (y^3)^2

                          = (8x^3 + y^3) (8x^3 - y^3)

                          = {(2x)^3 + y^3}{(2x)^3 – y^3}

                          = (2x + y){(2x)^2 – 2x βˆ™ y + y^2} βˆ™ (2x – y){(2x)^2 + 2x βˆ™ y + y^2}

                          = (2x + y)(2x – y)(4x^2 + y^2 + 2xy)(4x^2 + y^2 – 2xy)


Factorization of expressions reducible to a^3 Β± b^3 form

Factorize: x^3 + 3x^2y + 3xy^3 + 2y^3.

Solution:

Given expression = x^3 + 3x^2y + 3xy^3 + 2y^3

                          = x^3 + 3x^2y + 3xy^3 + y^3 + y^3

                          = (x + y)^3 + y^3, [Which is of the form a^3 + b^3]

                          = {(x+ y) + y}{(x + y)^2 – (x + y)y + y^2}

                          = (x + 2y)(x^2 + 2xy + y^2 – xy – y^2 + y^2)

                          = (x + 2y)(x^2 +xy + y^2).




9th Grade Math

From Factorization of Expressions of the Form a^3 - b^3 to HOME PAGE


Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?