Divide by 2-digit Divisors

We will learn step-by-step how to divide by 2-digit divisors.

Let us consider some examples of division by two-digit numbers or divisors.

1. Divide 618 by 12.

Divide 618 by 12

Quotient = 51

Remainder = 6

Divisor (12) has two digits. Consider the two digits of the dividend from the left (61).

Now, consider the left most digit of the divisor 12 i.e. 1 and the left most digit of the dividend i.e. 6.

As, 1 goes into 6, 6 times. So, 6 may be the left most digit of the quotient.

Let us check 12 × 6 = 72, but 72 > 61.

Now, consider 5 instead of 6 as left most digit of the quotient.

Let us check 12 × 5 = 60, but 60 < 61.

Now, write 5 as the left most digit of the quotient and 60 below the 61.

Subtract 61 - 60 = 1. Write 1 as remainder.

Bring down 8 from the dividend 618 and write it to the right of 1.

It makes the remainder 18, which we consider as dividend now. i.e. we have to find 18 ÷ 12.

1 goes into 1, 1 time. So, 1 may be the second digit of the quotient.

Let us check. 12 × 1 = 12 and 12 < 18

So, write 1 as quotient next to the 5 and 12 below the 18.

Subtract 18 - 12 = 6. Write 6 as remainder.

6 becomes the final remainder as there is no digit left in dividend 618 to bring down and the remainder 6 cannot be divided by the divisor 12.


 2. Divide 8268 by 15.

Divide 8268 by 15

Quotient = 551

Remainder = 3

Divisor (15) has two digits. So, we will divide by 2-digit divisors. Consider the two digits of the dividend from the left (82).

Now, consider the left most digit of the divisor 15 i.e. 1 and the left most digit of the dividend i.e. 8.

As, 1 goes into 8, 8 times. So, 8 may be the left most digit of the quotient.

Let us check 15 × 8 = 120, but 120 > 82.

So, consider 7 and check 15 × 7 = 105, but 105 > 82.

Now, consider 6 and check 15 × 6 = 90, but 90 > 82.

Now, consider 5 and check 15 × 5 = 75, and 75 < 82.

Write 5 as the left most digit of the quotient and 75 below the 82.

Subtract 82 - 75 = 7. Write 7 as remainder.

Bring down 6 from the dividend 8268 and write it to the right of 7.

It makes the remainder 76, which we consider as dividend now. i.e. we have to find 76 ÷ 15.

Repeat the process of 2nd step till we get a remainder either 0 or a number which is not divisible by divisor (15).


3. Divide 4573 by 52.

Divide 4573 by 52

Quotient = 87

Remainder = 49

Divisor (52) has two digits. So, we will divide by 2-digit divisors. Consider the two left most digits of the dividend (45).

Since 45 < 52. Consider 3 left most digits of dividend i.e. 457. Because 1st digit of divisor (5) is greater than 1st digit of dividend (4) so, consider 45.

5 goes into 45, 9 times. So, 9 may be the left most digit of the quotient.

Let us check 52 × 9 = 468, but 468 > 457.

Consider 8 and check 52 × 8 = 416, but 416 < 457.

Write 8 as quotient and 416 below the 457.

Subtract 457 - 416 = 41. Write 41 as remainder.

Bring down 3 from the dividend 4573 and write it to the right of 41.

Consider 413 as dividend now. i.e. we have to find 413 ÷ 52.

Repeat the process of 2nd step till we get a remainder either 0 or a number which is not divisible by divisor (52).





4th Grade Math Activities

From Divide by 2-digit Divisors to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 11, 25 02:14 PM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More