Cube of the Sum of Two Binomials

What is the formula for the cube of the sum of two binomials?

To determine cube of a number means multiplying a number with itself three times similarly, cube of a binomial means multiplying a binomial with itself three times.



(a + b) (a + b) (a + b) = (a + b)3

or, (a + b) (a + b) (a + b) = (a + b) (a + b)2

                                    = (a + b) (a2 + 2ab + b2),
                                    [Using the formula of (a + b)2 = a2 + 2ab + b2]

                                    = a(a2 +2ab + b2) + b(a2 + 2ab + b2)

                                    = a3 + 2a2 b + ab2 + ba2 + 2ab2 + b3

                                    = a3 + 3a2 b + 3ab2 + b3



Therefore, (a + b)3 = a3 + 3a2 b + 3ab2 + b3

Thus, we can write it as; a = first term, b = second term

(First term + Second term)3 = (first term)3 + 3 (first term)2 (second term) + 3 (first term) (second term)2 + (second term)3

So, the formula for the cube of the sum of two terms is written as:

(a + b)3 = a3 + 3a2b + 3ab2 + b3

            = a3 + b3 + 3ab (a + b)


Worked-out examples to find the cube of the sum of two binomials:

1. Determine the expansion of (3x - 2y)3

Solution:

We know, (a + b)3 = a3 + 3a2 b + 3ab2 + b3

(3x - 2y)3

Here, a = 3x, b = 2y

= (3x)3 + 3 (3x)2 (2y) + 3 (3x)(2y)2 + (2y)3

= 27x3 + 3 (9x2) (2y) + 3 (3x)(4y2) + (8y3)

= 27x3 + 54x2y + 36xy2 + 8y3

Therefore, (3x - 2y)3 = 27x3 + 54x2y + 36xy2 + 8y3


2. Use the formula and evaluate (105)3.

Solution:

(105)3

= (100 + 5)3

We know, (a + b)3 = a3 + 3a2 b + 3ab2 + b3

Here, a = 100, b = 5

= (100)3 + 3 (100)2 (5) + 3 (100) (5)2 + (5)3

= 1000000 + 15 (10000) + 300 (25) + 125

= 1000000 + 150000 + 7500 + 125

= 1157625

Therefore, (105)3 = 1157625




3. Find the value of x3 + 27y3 if x + 3y = 5 and xy = 2.

Solution:

Given, x + 3y = 5

Now cube both sides we get,

(x + 3y)3 = (5)3

We know, (a + b)3 = a3 + 3a2 b + 3ab2 + b3

Here, a = x, b = 3y

⇒ x3 + 3 (x)2 (3y) + 3 (x)(3y)2 + (3y)3 = 343

⇒ x3 + 9(x)2 y + 27xy2 27y3 = 343

⇒ x3 + 9xy [x + 3y] + 27y3 = 343

Substituting the value of x + 3y = 5 and xy = 2, we get

⇒ x3 + 9 (2) (5) + 27y3 = 343

⇒ x3 + 90 + 27y3 = 343

⇒ x3 + 27y3 = 343 – 90

⇒ x3 +27y3 = 253

Therefore, x3 + 27y3 = 253

4. If x - \(\frac{1}{x}\)= 5, find the value of \(x^{3}\) - \(\frac{1}{x^{3}}\)

Solution:

x - \(\frac{1}{x}\) = 5

Cubing both sides, we get

 (x -  \(\frac{1}{x}\))\(^{3}\) =  \(5^{3}\)

\(x^{3}\) –  3 (x) (\(\frac{1}{x}\)) [ x - \(\frac{1}{x}\)] – (\(\frac{1}{x}\))\(^{3}\) = 216

\(x^{3}\)  – 3 (x - \(\frac{1}{x}\)) – \(\frac{1}{x^{3}}\) = 216                       

\(x^{3}\) –  \(\frac{1}{x^{3}}\) – 3 (x - \(\frac{1}{x}\)) = 216

\(x^{3}\) –  \(\frac{1}{x^{3}}\) – 3 × 5 = 216, [Putting the value of  x - \(\frac{1}{x}\)= 5]                  

\(x^{3}\) –  \(\frac{1}{x^{3}}\) – 15 = 216

\(x^{3}\) – \(\frac{1}{x^{3}}\) = 216 + 15                               

\(x^{3}\) – \(\frac{1}{x^{3}}\) = 231


Thus, to expand the cube of the sum of two binomials we can use the formula to evaluate.





7th Grade Math Problems

8th Grade Math Practice

From Cube of The Sum of Two Binomials to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Relation between Diameter Radius and Circumference |Problems |Examples

    Apr 22, 24 05:19 PM

    Relation between Radius and Diameter of a Circle
    Relation between diameter radius and circumference are discussed here. Relation between Diameter and Radius: What is the relation between diameter and radius? Solution: Diameter of a circle is twice

    Read More

  2. Circle Math | Terms Related to the Circle | Symbol of Circle O | Math

    Apr 22, 24 01:35 PM

    Circle using a Compass
    In circle math the terms related to the circle are discussed here. A circle is such a closed curve whose every point is equidistant from a fixed point called its centre. The symbol of circle is O. We…

    Read More

  3. Preschool Math Activities | Colorful Preschool Worksheets | Lesson

    Apr 21, 24 10:57 AM

    Preschool Math Activities
    Preschool math activities are designed to help the preschoolers to recognize the numbers and the beginning of counting. We believe that young children learn through play and from engaging

    Read More

  4. Months of the Year | List of 12 Months of the Year |Jan, Feb, Mar, Apr

    Apr 20, 24 05:39 PM

    Months of the Year
    There are 12 months in a year. The months are January, February, march, April, May, June, July, August, September, October, November and December. The year begins with the January month. December is t…

    Read More

  5. What are Parallel Lines in Geometry? | Two Parallel Lines | Examples

    Apr 20, 24 05:29 PM

    Examples of Parallel Lines
    In parallel lines when two lines do not intersect each other at any point even if they are extended to infinity. What are parallel lines in geometry? Two lines which do not intersect each other

    Read More