Cube of a Binomial

How do you get the cube of a binomial?

For cubing a binomial we need to know the formulas for the sum of cubes and the difference of cubes.

Sum of cubes:

The sum of a cubed of two binomial is equal to the cube of the first term, plus three times the square of the first term by the second term, plus three times the first term by the square of the second term, plus the cube of the second term.

(a + b)3 = a3 + 3a2b + 3ab2 + b3

            = a3 + 3ab (a + b) + b3

Difference of cubes:     

The difference of a cubed of two binomial is equal to the cube of the first term, minus three times the square of the first term by the second term, plus three times the first term by the square of the second term, minus the cube of the second term.



(a – b)3 = a3 – 3a2b + 3ab2 – b3

            = a3 – 3ab (a – b) – b3


Worked-out examples for the expansion of cube of a binomial:

Simplify the following by cubing:

1. (x + 5y)3 + (x – 5y)3

Solution:

We know, (a + b)3 = a3 + 3a2b + 3ab2 + b3

and,

(a – b)3 = a3 – 3a2b + 3ab2 – b3

Here, a = x and b = 5y

Now using the formulas for cube of two binomials we get,

= x3 + 3.x2.5y + 3.x.(5y)2 + (5y)3 + x3 - 3.x2.5y + 3.x.(5y)2 - (5y)3

= x3 + 15x2y + 75xy2 + 125 y3 + x3 - 15x2y + 75xy2 - 125 y3

= 2x3 + 150xy2

Therefore, (x + 5y)3 + (x – 5y)3 = 2x3 + 150xy2


2. \((\frac{1}{2} x + \frac{3}{2} y)^{3} + (\frac{1}{2} x - \frac{3}{2} y)^{3}\)

Solution:

Here a = \(\frac{1}{2} x, b = \frac{3}{2} y\)

 \(=(\frac{1}{2} x)^{3} + 3\cdot (\frac{1}{2} x)^{2} \cdot  \frac{3}{2} y + 3 \cdot \frac{1}{2} x \cdot (\frac{3}{2}y)^{2} + (\frac{3}{2}y)^{3} + (\frac{1}{2} x)^{3} - 3\cdot (\frac{1}{2} x)^{2} \cdot  \frac{3}{2} y + 3 \cdot \frac{1}{2} x \cdot (\frac{3}{2}y)^{2} - (\frac{3}{2}y)^{3}\)

 \(=\frac{1}{8} x^{3} + \frac{9}{8} x^{2} y + \frac{27}{8} x y^{2} + \frac{27}{8} y^{3} + \frac{1}{8} x^{3} - \frac{9}{8} x^{2} y + \frac{27}{8} x y^{2} - \frac{27}{8} y^{3}\)

 \(=\frac{1}{8} x^{3} + \frac{1}{8} x^{3} + \frac{27}{8} x y^{2} + \frac{27}{8} x y^{2}\)

 \(=\frac{1}{4} x^{3} + \frac{27}{4} x y^{2} \)

Therefore, \[(\frac{1}{2} x + \frac{3}{2} y)^{3} + (\frac{1}{2} x - \frac{3}{2} y)^{3} = \frac{1}{4} x^{3} + \frac{27}{4} x y^{2} \]


3. (2 – 3x)3 – (5 + 3x)3

Solution:

(2 – 3x)3 – (5 + 3x)3

= {23 - 3.22.(3x) + 3.2.(3x)2 - (3x)3} – {53 + 3.52.(3x) + 3.5.(3x)2 + (3x)3}

= {8 – 36x + 54 x2 - 27 x3} – {125 + 225x + 135x2 + 27 x3}

= 8 – 36x + 54 x2 - 27 x3 – 125 - 225x - 135x2 - 27 x3

= 8 – 125 – 36x - 225x + 54 x2 - 135x2 - 27 x3 - 27 x3

= -117 – 261x - 81 x2 - 54 x3

Therefore, (2 – 3x)3 – (5 + 3x)3 = -117 – 261x - 81 x2 - 54 x3


4. (5m + 2n)3 - (5m – 2n)3

Solution:

(5m + 2n)3 - (5m – 2n)3

= {(5m)3 + 3.(5m)2. (2n) + 3. (5m). (2n)2 + (2n)3} – {(5m)3 - 3.(5m)2. (2n) + 3. (5m). (2n)2 - (2n)3}

= {125 m3 + 150 m2 n + 60 m n2 + 8 n3} – {125 m3 - 150 m2 n + 60 m n2 - 8 n3}

= 125 m3 + 150 m2 n + 60 m n2 + 8 n3 – 125 m3 + 150 m2 n - 60 m n2 + 8 n3

= 125 m3 – 125 m3 + 150 m2 n + 150 m2 n + 60 m n2 - 60 m n2 + 8 n3 + 8 n3

= 300 m2 n + 16 n3

Therefore, (5m + 2n)3 - (5m – 2n)3 = 300 m2 n + 16 n3


The steps to find the mixed problem on cube of a binomial will help us to expand the sum or difference of two cubes.







7th Grade Math Problems

8th Grade Math Practice

From Cube of a Binomial to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Shifting of Digits in a Number |Exchanging the Digits to Another Place

    May 19, 24 05:43 PM

    What is the Effect of shifting of digits in a number? Let us observe two numbers 1528 and 5182. We see that the digits are the same, but places are different in these two numbers. Thus, if the digits…

    Read More

  2. Formation of Greatest and Smallest Numbers | Arranging the Numbers

    May 19, 24 03:36 PM

    Formation of Greatest and Smallest Numbers
    the greatest number is formed by arranging the given digits in descending order and the smallest number by arranging them in ascending order. The position of the digit at the extreme left of a number…

    Read More

  3. Formation of Numbers with the Given Digits |Making Numbers with Digits

    May 19, 24 03:19 PM

    In formation of numbers with the given digits we may say that a number is an arranged group of digits. Numbers may be formed with or without the repetition of digits.

    Read More

  4. Arranging Numbers | Ascending Order | Descending Order |Compare Digits

    May 19, 24 02:23 PM

    Arranging Numbers
    We know, while arranging numbers from the smallest number to the largest number, then the numbers are arranged in ascending order. Vice-versa while arranging numbers from the largest number to the sma…

    Read More

  5. Comparison of Numbers | Compare Numbers Rules | Examples of Comparison

    May 19, 24 01:26 PM

    Rules for Comparison of Numbers
    Rule I: We know that a number with more digits is always greater than the number with less number of digits. Rule II: When the two numbers have the same number of digits, we start comparing the digits…

    Read More