Criteria for Congruency

Here we will learn different criteria for congruency of triangles.

I. SAS (Side-Angle-Side) Criterion:

If two triangles have two sides of one equal to two sides of the other, each to each, and the angles included by those sides are equal then the triangles are congruent.

Side-Angle-Side Congruency

Here in ∆KLM and ∆XYZ,

KL = XY, LM = YZ and ∠L = ∠Y

Therefore, ∆KLM ≅ ∆XYZ.

Note: It is necessary for the included angles to be equal for congruency. If in the above figure, ∠L ≠ ∠Y and ∠L = ∠X, the triangle may not be congruent.

II. AAS (Angle-Angle-Side) Criterion:

If two triangles have two angles of one equal to two angles of the other, each to each, and any side of the one equal to the corresponding side of the other, then the triangles are congruent.

Angle-Angle-Side Congruency

Here in ∆KLM and ∆XYZ,

∠L = ∠Y, ∠M = ∠Z and KM = XZ.

Therefore, ∆KLM ≅ ∆XYZ.

 

III. SSS (Side-Side-Side) Criterion:

If two triangles have three sides of one equal to three sides of the other, the triangles are congruent.

Here in ∆KLM and ∆XYZ,

KL = XY, LM = YZ and KM = XZ.

Therefore, ∆KLM ≅ ∆XYZ.

Side-Side-Side Congruency

IV: RHS (Right Angle-Hypotenuse-Side) Criterion:

If two right-angled triangles have their hypotenuses equal and one side of one equal to one side of the other, the triangles are congruent.

Right Angle-Hypotenuse-Side Congruency

Here, ∠L = ∠Y = 90°, KM = XZ and KL = XY.

Therefore, ∆KLM ≅ ∆XYZ.

Note: * Two triangles will be congruent only if they satisfy any one of the four criterion mentioned above.

** Two triangles may not be congruent if any three parts (elements) of one are equal to the corresponding parts of the other.

Examples:

(i) If two triangles have three angles of one equal to three angles of the other, they are said to be equiangular. But equiangular triangles need not be congruent.

Here, in the given figure, ∆KLM and ∆XYZ are equiangular but not congruent.

In short, if two triangles are congruent, they must be equiangular; but if they are equiangular, they may or may not be congruent.

Equiangular Triangles

(ii) If in two triangles, two sides and one angle of one are equal to the corresponding sides and corresponding angle of the other, the triangles need not be congruent.

Need Not be Congruent

In the adjoining figure, KL = XY, KM = XZ, ∠M = ∠Z.

But ∆KLM and ∆XYZ are not congruent. For congruency, two sides and the included angle of one must be equal to those of the other.

Note: The abbreviation CPCTC is generally used for ‘Corresponding parts of Congruent Triangles are Congruent’.




9th Grade Math

From Criteria for Congruency to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Worksheets on Comparison of Numbers | Find the Greatest Number

    Oct 10, 24 05:15 PM

    Comparison of Two Numbers
    In worksheets on comparison of numbers students can practice the questions for fourth grade to compare numbers. This worksheet contains questions on numbers like to find the greatest number, arranging…

    Read More

  2. Counting Before, After and Between Numbers up to 10 | Number Counting

    Oct 10, 24 10:06 AM

    Before After Between
    Counting before, after and between numbers up to 10 improves the child’s counting skills.

    Read More

  3. Expanded Form of a Number | Writing Numbers in Expanded Form | Values

    Oct 10, 24 03:19 AM

    Expanded Form of a Number
    We know that the number written as sum of the place-values of its digits is called the expanded form of a number. In expanded form of a number, the number is shown according to the place values of its…

    Read More

  4. Place Value | Place, Place Value and Face Value | Grouping the Digits

    Oct 09, 24 05:16 PM

    Place Value of 3-Digit Numbers
    The place value of a digit in a number is the value it holds to be at the place in the number. We know about the place value and face value of a digit and we will learn about it in details. We know th…

    Read More

  5. 3-digit Numbers on an Abacus | Learning Three Digit Numbers | Math

    Oct 08, 24 10:53 AM

    3-Digit Numbers on an Abacus
    We already know about hundreds, tens and ones. Now let us learn how to represent 3-digit numbers on an abacus. We know, an abacus is a tool or a toy for counting. An abacus which has three rods.

    Read More