Converse of Pythagoras’ Theorem

If in a triangle the sum of the squares of two sides is equal to the square of the third side then the triangle is a right-angled triangle, the angle between the first two sides being a right angle.

Given In the ∆XYZ, XY\(^{2}\) + YZ\(^{2}\) = XZ\(^{2}\)

Converse of Pythagoras’ Theorem Proof

To prove ∠XYZ = 90°

Construction: Draw a ∆PQR in which ∠PQR = 90° and PQ = XY, QR = YZ

Proof:

In the right-angled ∆PQR, PR\(^{2}\) = PQ\(^{2}\) + QR\(^{2}\)

Therefore, PR\(^{2}\) = XY\(^{2}\) + YZ\(^{2}\) = XZ\(^{2}\)

Therefore, PR = XZ

Now, in ∆XYZ and ∆PQR, XY = PQ, YZ = QR and XZ = PR

Therefore, ∆XYZ ≅ ∆PQR (by SSS criterion of congruency)

Therefore, ∠XYZ = ∠PQR = 90° (CPCTC)


Problems on Converse of Pythagoras’ Theorem

1. If the sides of a triangle are in the ratio 13:12:5, prove that the triangle is a right-angled triangle. Also state which angle is the right angle.

Solution:

Let the triangle be PQR.

Converse of Pythagoras’ Theorem

Here the sides are PQ = 13k, QR = 12k and RP = 5k

Now, QR\(^{2}\) + RP\(^{2}\) = (12k)\(^{2}\) + (5k)\(^{2}\)

                                           = 144k\(^{2}\) + 25k\(^{2}\)

                                           = 169k\(^{2}\)

                                           = (13k)\(^{2}\)

                                           = PQ\(^{2}\)

Therefore, by converse of Pythagoras theorem, PQR is a right-angled triangle in which ∠R = 90°.





9th Grade Math

From Converse of Pythagoras’ Theorem to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Mixed Addition and Subtraction | Questions on Addition

    Jan 12, 25 02:14 PM

    In worksheet on mixed addition and subtraction the questions involve both addition and subtraction together; all grade students can practice the questions on addition and subtraction together.

    Read More

  2. Estimating Sums and Differences | Estimations | Practical Calculations

    Jan 12, 25 02:02 PM

    Estimating Difference
    For estimating sums and differences in the number we use the rounded numbers for estimations to its nearest tens, hundred, and thousand. In many practical calculations, only an approximation is requir…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jan 12, 25 01:36 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Checking Subtraction using Addition |Use Addition to Check Subtraction

    Jan 12, 25 01:13 PM

    Checking Subtraction using Addition Worksheet
    We can check subtraction by adding the difference to the smaller number. Since the sum of difference and smaller number is equal to the larger number, subtraction is correct.

    Read More

  5. Worksheet on Subtraction of 4-Digit Numbers|Subtracting 4-Digit Number

    Jan 12, 25 09:04 AM

    Worksheet on Subtraction of 4-Digit Numbers
    Practice the questions given in the worksheet on subtraction of 4-digit numbers. Here we will subtract two 4-digit numbers (without borrowing and with borrowing) to find the difference between them.

    Read More