Circumcentre and Incentre of a Triangle

We will discuss circumcentre and incentre of a triangle.

In general, the incentre and the circumcentre of a triangle are two distinct points.

Incentre and Circumcentre of a Triangle

Here in the triangle XYZ, the incentre is at P and the circumcentre is at O. 

A special case: an equilateral triangle, the bisector of the opposite side, so it is also a median.

In the ∆XYZ, XP, YQ and ZR are the bisectors of ∠YXZ, ∠XYZ and ∠YZX respectively; they are also the perpendicular bisectors of YZ, ZX and XY respectively; they are also the medians of the triangle. So, their point of intersection, G, is the incentre, circumcentre as well as the centroid of the triangle. So, in an equilateral triangle, these three points are coincident.

Incentre, Circumcentre and Centroid of an Equilateral Triangle

If XY = YZ = ZX = 2a then in ∆XYP, YP = a and XP = \(\sqrt{3}\)a.

Now, XG = \(\frac{}{}\) = \(\frac{2}{3}\)XP = \(\frac{2\sqrt{3}a}{3}\), and GP = \(\frac{1}{3}\)XP = \(\frac{\sqrt{3}a}{3}\).

Therefore, radius of the circumcircle is XG = \(\frac{2\sqrt{3}a}{3}\) = \(\frac{2a}{\sqrt{3}}\) = \(\frac{Any side of the equilateral triangle}{\sqrt{3}}\).

Incentre, Circumcentre & Centroid of an Equilateral Triangle

The radius of the incircle = GP = \(\frac{a}{\sqrt{3}}\) = \(\frac{2a}{2\sqrt{3}}\) = \(\frac{Any side of the equilateral triangle}{2\sqrt{3}}\).

Therefore, radius of the circumcircle of an equilateral triangle = 2 × (Radius of the incircle).






10th Grade Math

From Circumcentre and Incentre of a Triangle to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. How to Do Long Division? | Method | Steps | Examples | Worksheets |Ans

    Jan 23, 25 02:43 PM

    Long Division and Short Division Forms
    As we know that the division is to distribute a given value or quantity into groups having equal values. In long division, values at the individual place (Thousands, Hundreds, Tens, Ones) are dividend…

    Read More

  2. Long Division Method with Regrouping and without Remainder | Division

    Jan 23, 25 02:25 PM

    Dividing a 2-Digits Number by 1-Digit Number With Regrouping
    We will discuss here how to solve step-by-step the long division method with regrouping and without remainder. Consider the following examples: 468 ÷ 3

    Read More

  3. Long Division Method Without Regrouping and Without Remainder | Divide

    Jan 23, 25 10:44 AM

    Dividing a 2-Digits Number by 1-Digit Number
    We will discuss here how to solve step-by-step the long division method without regrouping and without remainder. Consider the following examples: 1. 848 ÷ 4

    Read More

  4. Relationship between Multiplication and Division |Inverse Relationship

    Jan 23, 25 02:00 AM

    We know that multiplication is repeated addition and division is repeated subtraction. This means that multiplication and division are inverse operation. Let us understand this with the following exam…

    Read More

  5. Divide by Repeated Subtraction | Division as Repeated Subtraction

    Jan 22, 25 02:23 PM

    Divide by Repeated Subtraction
    How to divide by repeated subtraction? We will learn how to find the quotient and remainder by the method of repeated subtraction a division problem may be solved.

    Read More