Subscribe to our YouTube channel for the latest videos, updates, and tips.


Area of a Parallelogram is Equal to that of a Rectangle Between the Same Parallel Lines 

Here we will prove that the area of a parallelogram is equal to that of a rectangle on the same base and of the same altitude, that is between the same parallel lines.

Given: PQRS is a parallelogram and PQ MN is a rectangle on the same base PQ and between the same parallel lines PQ and NR

To prove: ar(Parallelogram PQRS) = ar(Rectangle PQMN)

Proof:

            Statement

          Reason

1. PS = QR

1. Opposite sides of the parallelogram PQRS.

2. PN = QM

2. Opposite sides of the rectangle PQMN.

3. ∠PNS = ∠QMR

3. Both are right angles, PQMN being a rectangle.

4. ∆PNS ≅ ∆QMR

4. By RHS axiom of congruency.

5. ar(∆PNS) = ar(∆QMR)

5. By area axiom for congruent figures.

6. ar(∆PNS) + ar(Quadrilateral PQMS) = ar(∆QMR) + ar(Quadrilateral PQMS)

6. Adding the same area on both sides of the equality in the statement 5.

7. ar(Rectangle PQMN) = ar(Parallelogram PQRS). (Proved)

7. By adding axiom of area.

Corollaries:

(i) Area of a parallelogram = Base × Height,

because ar(Parallelogram PQRS) = ar(Rectangle PQMN)

                                                = PQ × MQ

                                                = Base × Height.


(ii) Parallelograms with equal base and between the same parallels have the same area.

Here PQRS and MNRS are two parallelograms whose bases PQ and MN are equal, and they are between the same two parallel lines PN and SR. So, the two parallelograms have equal height.

Using ar(Parallelogram) = Base × Height, we find their areas are equal.


(iii) The ratios of the areas of two parallelograms that are between the same parallel lines (that is heights are equal) = Ratio of their bases.





9th Grade Math

From Area of a Parallelogram is Equal to that of a Rectangle Between the Same Parallel Lines to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 8 Times Table | Multiplication Table of 8 | Read Eight Times Table

    May 18, 25 04:33 PM

    Printable eight times table
    In 8 times table we will memorize the multiplication table. Printable multiplication table is also available for the homeschoolers. 8 × 0 = 0 8 × 1 = 8 8 × 2 = 16 8 × 3 = 24 8 × 4 = 32 8 × 5 = 40

    Read More

  2. Worksheet on Average | Word Problem on Average | Questions on Average

    May 17, 25 05:37 PM

    In worksheet on average interest we will solve 10 different types of question. Find the average of first 10 prime numbers. The average height of a family of five is 150 cm. If the heights of 4 family

    Read More

  3. How to Find the Average in Math? | What Does Average Mean? |Definition

    May 17, 25 04:04 PM

    Average 2
    Average means a number which is between the largest and the smallest number. Average can be calculated only for similar quantities and not for dissimilar quantities.

    Read More

  4. Problems Based on Average | Word Problems |Calculating Arithmetic Mean

    May 17, 25 03:47 PM

    Here we will learn to solve the three important types of word problems based on average. The questions are mainly based on average or mean, weighted average and average speed.

    Read More

  5. Rounding Decimals | How to Round a Decimal? | Rounding off Decimal

    May 16, 25 11:13 AM

    Round off to Nearest One
    Rounding decimals are frequently used in our daily life mainly for calculating the cost of the items. In mathematics rounding off decimal is a technique used to estimate or to find the approximate

    Read More