Application Problems on Area of a Circle

We will discuss here about the Application problems on Area of a circle.

1. The minute hand of a clock is 7 cm long. Find the area traced out by the minute hand of the clock between 4.15 PM to 4.35 PM on a day.

Solution:

The angle through which the minute hand rotates in 20 minutes (i.e., 4:35 PM – 4:15 PM) is \(\frac{20}{60}\) × 360°, i.e., 120°

Area Traced Out by the Minute Hand

Therefore, the required area = The area of the sector of central angle 120°

                                          = \(\frac{θ}{360}\) × πr2

                                          = \(\frac{120}{360}\) × \(\frac{22}{7}\)  × 72 cm2, [Since, θ = 120, r = 7 cm]

                                          = \(\frac{1}{3}\) × 22 × 7 cm2.

                                          = \(\frac{154}{3}\) cm2.

                                          = 51\(\frac{1}{3}\) cm2.


2. The cross section of a tunnel is in the shape of a semicircle surmounted on the longer side of a rectangle whose shorter side measures 6 m. If the perimeter of the cross section is 66 m, find the breadth and height of the tunnel.

Solution:

Let the radius of the secicircle be r m.

The Cross Section of a Tunnel

Then, the perimeter of the cross section

                                               = PQ + QR +PS + Semicircle STR

                                               = (2r + 6 + 6 + πr) m

                                               = (2r + 12 + \(\frac{22}{7}\) r) m

                                               = (12 + 2r + \(\frac{22}{7}\) r) m

                                               = (12 + \(\frac{36}{7}\) r) m

Therefore, 66m = (12 + \(\frac{36}{7}\) r) m

⟹ 66 = 12 + \(\frac{36}{7}\) r

⟹ 12 + \(\frac{36}{7}\) r = 66

⟹ \(\frac{36}{7}\) r = 66 - 12

⟹ \(\frac{36}{7}\) r = 54

⟹ r = 54 × \(\frac{7}{36}\)

⟹ r = \(\frac{21}{2}\).

Therefore, PQ = Breadth of the tunnel = 2r m = 2 × \(\frac{21}{2}\) = 21 m.

And height of the tunnel = r m + 6 m

                                    = \(\frac{21}{2}\) m + 6 m

                                    = \(\frac{21}{2}\) m + 6 m

                                    = \(\frac{33}{2}\) m

                                    = 16.5 m.






10th Grade Math

From Application Problems on Area of a Circle to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 14, 24 02:12 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 14, 24 12:25 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  3. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 13, 24 08:43 AM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  4. Patterns in Math | Missing Number | Counting Numbers | Worksheets

    Dec 13, 24 12:31 AM

    Finding patterns in math is very important to understand the sequence in the series. We need to find the exact missing number that from the group of numbers. The counting numbers may be counting

    Read More

  5. Concept of Pattern | Similar Patterns in Mathematics | Similar Pattern

    Dec 12, 24 11:22 PM

    Patterns in Necklace
    Concept of pattern will help us to learn the basic number patterns and table patterns. Animals such as all cows, all lions, all dogs and all other animals have dissimilar features. All mangoes have si…

    Read More