Application Problems on Area of a Circle

We will discuss here about the Application problems on Area of a circle.

1. The minute hand of a clock is 7 cm long. Find the area traced out by the minute hand of the clock between 4.15 PM to 4.35 PM on a day.

Solution:

The angle through which the minute hand rotates in 20 minutes (i.e., 4:35 PM – 4:15 PM) is \(\frac{20}{60}\) × 360°, i.e., 120°

Area Traced Out by the Minute Hand

Therefore, the required area = The area of the sector of central angle 120°

                                          = \(\frac{θ}{360}\) × πr2

                                          = \(\frac{120}{360}\) × \(\frac{22}{7}\)  × 72 cm2, [Since, θ = 120, r = 7 cm]

                                          = \(\frac{1}{3}\) × 22 × 7 cm2.

                                          = \(\frac{154}{3}\) cm2.

                                          = 51\(\frac{1}{3}\) cm2.


2. The cross section of a tunnel is in the shape of a semicircle surmounted on the longer side of a rectangle whose shorter side measures 6 m. If the perimeter of the cross section is 66 m, find the breadth and height of the tunnel.

Solution:

Let the radius of the secicircle be r m.

The Cross Section of a Tunnel

Then, the perimeter of the cross section

                                               = PQ + QR +PS + Semicircle STR

                                               = (2r + 6 + 6 + πr) m

                                               = (2r + 12 + \(\frac{22}{7}\) r) m

                                               = (12 + 2r + \(\frac{22}{7}\) r) m

                                               = (12 + \(\frac{36}{7}\) r) m

Therefore, 66m = (12 + \(\frac{36}{7}\) r) m

⟹ 66 = 12 + \(\frac{36}{7}\) r

⟹ 12 + \(\frac{36}{7}\) r = 66

⟹ \(\frac{36}{7}\) r = 66 - 12

⟹ \(\frac{36}{7}\) r = 54

⟹ r = 54 × \(\frac{7}{36}\)

⟹ r = \(\frac{21}{2}\).

Therefore, PQ = Breadth of the tunnel = 2r m = 2 × \(\frac{21}{2}\) = 21 m.

And height of the tunnel = r m + 6 m

                                    = \(\frac{21}{2}\) m + 6 m

                                    = \(\frac{21}{2}\) m + 6 m

                                    = \(\frac{33}{2}\) m

                                    = 16.5 m.






10th Grade Math

From Application Problems on Area of a Circle to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Tangrams Math | Traditional Chinese Geometrical Puzzle | Triangles

    Apr 17, 24 01:53 PM

    Tangrams
    Tangram is a traditional Chinese geometrical puzzle with 7 pieces (1 parallelogram, 1 square and 5 triangles) that can be arranged to match any particular design. In the given figure, it consists of o…

    Read More

  2. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Apr 17, 24 01:32 PM

    Duration of Time
    We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton every evening. Yesterday, their game started at 5 : 15 p.m.

    Read More

  3. Worksheet on Third Grade Geometrical Shapes | Questions on Geometry

    Apr 16, 24 02:00 AM

    Worksheet on Geometrical Shapes
    Practice the math worksheet on third grade geometrical shapes. The questions will help the students to get prepared for the third grade geometry test. 1. Name the types of surfaces that you know. 2. W…

    Read More

  4. 4th Grade Mental Math on Factors and Multiples |Worksheet with Answers

    Apr 16, 24 01:15 AM

    In 4th grade mental math on factors and multiples students can practice different questions on prime numbers, properties of prime numbers, factors, properties of factors, even numbers, odd numbers, pr…

    Read More

  5. Worksheet on Factors and Multiples | Find the Missing Factors | Answer

    Apr 15, 24 11:30 PM

    Worksheet on Factors and Multiples
    Practice the questions given in the worksheet on factors and multiples. 1. Find out the even numbers. 27, 36, 48, 125, 360, 453, 518, 423, 54, 58, 917, 186, 423, 928, 358 2. Find out the odd numbers.

    Read More