Subscribe to our YouTube channel for the latest videos, updates, and tips.


Angles of a Quadrilateral are in Ratio

The four angles of a quadrilateral are in ratio then how to find the measure of each angle of the quadrilateral.  According to the angle sum property of quadrilateral, we know that the sum of the angles of a quadrilateral is 360°.

Solved examples of angles of a quadrilateral are in ratio:

1. In a quadrilateral ABCD, the angles A, B, C, D are in the ratio 3 : 5 : 7 : 9. Find the measure of each angle of the quadrilateral.

Solution:            

Let the common ratio be x.

Then the four angles of the quadrilateral are 3x, 5x, 7x, 9x.

According to the angle sum property of quadrilateral,

3x + 5x + 7x + 9x = 360   

⇒ 24x = 360       

⇒ x = 360/24

⇒ x = 15°

Therefore, measure of angle A 3x = 3 × 15 = 45°

Measure of angle B = 5x = 5 × 15 = 75°

Measure of angle C = 7x = 7 × 15 = 105°

Measure of angle D = 9x = 9 × 15 = 135°

Therefore, the four angles of the quadrilateral are 45°, 75°, 105° and 135°.


2. The four angles of a quadrilateral are in the ratio 2 : 3 : 5 : 8. Find the angles.

Solution:

Let the measures of angles of the given quadrilateral be (2x)°, (3x)°, (5x)° and (8x)°.

We know that the sum of the angles of a quadrilateral is 360°.

Therefore, 2x + 3x + 5x + 8x = 360

⇒ 18x = 360

⇒ x = 20.

So, the measures of angles of the given quadrilateral are

(2 × 20)°, (3 × 20)°, (5 × 20)° and (8 × 20)°

i.e., 40°, 60°, 100° and 160°.


3. The angles of a quadrilateral are in ratio 1 : 2 : 3 : 4. Find the measure of each of the four angles.

Solution:            

Let the common ratio be x.

Then the measure of four angles is 1x, 2x, 3x, 4x

We know that the sum of the angles of quadrilateral is 360°.

Therefore, x + 2x + 3x + 4x = 360°

⇒ 10x = 360°

⇒ x = 360/10

⇒ x = 36

Therefore, 1x = 1 × 36 = 36°

2x = 2 × 36 = 72°

3x = 3 × 36 = 108°

4x = 4 × 36 = 144°

Hence, the measure of the four angles is 36°, 72°, 108°, and 144°








7th Grade Math Problems 

8th Grade Math Practice 

From Angles of a Quadrilateral are in Ratio to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Average | Word Problem on Average | Questions on Average

    May 19, 25 02:53 PM

    Worksheet on Average
    In worksheet on average we will solve different types of questions on the concept of average, calculating the average of the given quantities and application of average in different problems.

    Read More

  2. 8 Times Table | Multiplication Table of 8 | Read Eight Times Table

    May 18, 25 04:33 PM

    Printable eight times table
    In 8 times table we will memorize the multiplication table. Printable multiplication table is also available for the homeschoolers. 8 × 0 = 0 8 × 1 = 8 8 × 2 = 16 8 × 3 = 24 8 × 4 = 32 8 × 5 = 40

    Read More

  3. How to Find the Average in Math? | What Does Average Mean? |Definition

    May 17, 25 04:04 PM

    Average 2
    Average means a number which is between the largest and the smallest number. Average can be calculated only for similar quantities and not for dissimilar quantities.

    Read More

  4. Problems Based on Average | Word Problems |Calculating Arithmetic Mean

    May 17, 25 03:47 PM

    Here we will learn to solve the three important types of word problems based on average. The questions are mainly based on average or mean, weighted average and average speed.

    Read More

  5. Rounding Decimals | How to Round a Decimal? | Rounding off Decimal

    May 16, 25 11:13 AM

    Round off to Nearest One
    Rounding decimals are frequently used in our daily life mainly for calculating the cost of the items. In mathematics rounding off decimal is a technique used to estimate or to find the approximate

    Read More