Angle Sum Property of a Quadrilateral

Theorem and Proof of angle sum property of a quadrilateral.

Prove that the sum of all the four angles of a quadrilateral is 360°.

Proof: Let ABCD be a quadrilateral. Join AC.

Clearly, ∠1 + ∠2 = ∠A ...... (i)

And, ∠3 + ∠4 = ∠C ...... (ii)

We know that the sum of the angles of a triangle is 180°.

Angle Sum Property of a Quadrilateral









Therefore, from ∆ABC, we have

∠2 + ∠4 + ∠B = 180° (Angle sum property of triangle)

From ∆ACD, we have 

∠1 + ∠3 + ∠D = 180° (Angle sum property of triangle)

Adding the angles on either side, we get;

∠2 + ∠4 + ∠B + ∠1 + ∠3 + ∠D = 360°

⇒ (∠1 + ∠2) + ∠B + (∠3 + ∠4) + ∠D = 360°

⇒ ∠A + ∠B + ∠C + ∠D = 360° [using (i) and (ii)].

Hence, the sum of all the four angles of a quadrilateral is 360°.


Solved examples of angle sum property of a quadrilateral:

1. The angle of a quadrilateral are (3x + 2)°, (x – 3), (2x + 1)°, 2(2x + 5)° respectively. Find the value of x and the measure of each angle.

Solution:            

Using angle sum property of quadrilateral, we get

 (3x + 2)°+ (x – 3)° + (2x + 1)° +  2(2x + 5)°= 360°                 

⇒ 3x + 2 + x - 3 + 2x + 1 + 4x + 10 = 360°

⇒ 10x + 10 = 360                              

⇒ 10x = 360 – 10                              

⇒ 10x = 350                       

⇒ x = 350/10                     

⇒ x = 35                                              

Therefore, (3x + 2) = 3 × 35 + 2 = 105 + 2 = 107°

(x – 3) = 35 – 3 = 32°

(2x + 1) = 2 × 35 + 1 = 70 + 1 = 71°

2(2x + 5) = 2(2 × 35 + 5) = 2(70 + 5) = 2 × 75 = 150°

Therefore, the four angles of the quadrilateral are 32°, 71° 107°, 150° respectively.


2. In a quadrilateral PQRS, PQ + QR + RS + SP < 2 (PR + QS).

Solution:            

Proof of Angle Sum Property of a Quadrilateral









In ∆POS, PO + OS > PS …………… (i)

In ∆SOR, SO + OR > SR …………… (ii)

In ∆QOR, QO + OR > QR …………… (iii)

In ∆POQ, PO + OQ > PQ …………… (iv)

(i) + (ii) + (iii) + (iv) (Using triangle inequality property)

PO + OS + OS + OR + OQ + OR + OP + OQ > PS + SR + QR + PQ

⇒ 2 (OP + OQ + OR + OS) > PQ + QR + CS + DP

⇒ 2 [(OP + OR) + (OQ + OS)] > PQ + QR + CS + DP

⇒ 2 (PR + QS) > PQ + QR + RS + SP


The above examples will help us to solve various types of problems based on angle sum property of a quadrilateral.


7th Grade Math Problems 

8th Grade Math Practice 

From Angle Sum Property of a Quadrilateral to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Roman Numerals | System of Numbers | Symbol of Roman Numerals |Numbers

    Feb 22, 24 04:21 PM

    List of Roman Numerals Chart
    How to read and write roman numerals? Hundreds of year ago, the Romans had a system of numbers which had only seven symbols. Each symbol had a different value and there was no symbol for 0. The symbol…

    Read More

  2. Worksheet on Roman Numerals |Roman Numerals|Symbols for Roman Numerals

    Feb 22, 24 04:15 PM

    Roman Numbers Table
    Practice the worksheet on roman numerals or numbers. This sheet will encourage the students to practice about the symbols for roman numerals and their values. Write the number for the following: (a) V…

    Read More

  3. Roman Symbols | What are Roman Numbers? | Roman Numeration System

    Feb 22, 24 02:30 PM

    Roman Numbers
    Do we know from where Roman symbols came? In Rome, people wanted to use their own symbols to express various numbers. These symbols, used by Romans, are known as Roman symbols, Romans used only seven…

    Read More

  4. Place Value | Place, Place Value and Face Value | Grouping the Digits

    Feb 19, 24 11:57 PM

    Place-value of a Digit
    The place value of a digit in a number is the value it holds to be at the place in the number. We know about the place value and face value of a digit and we will learn about it in details. We know th…

    Read More

  5. Math Questions Answers | Solved Math Questions and Answers | Free Math

    Feb 19, 24 11:14 PM

    Math Questions Answers
    In math questions answers each questions are solved with explanation. The questions are based from different topics. Care has been taken to solve the questions in such a way that students

    Read More