Angle Sum Property of a Quadrilateral

Theorem and Proof of angle sum property of a quadrilateral.

Prove that the sum of all the four angles of a quadrilateral is 360°.

Proof: Let ABCD be a quadrilateral. Join AC.

Clearly, ∠1 + ∠2 = ∠A ...... (i)

And, ∠3 + ∠4 = ∠C ...... (ii)

We know that the sum of the angles of a triangle is 180°.

Angle Sum Property of a Quadrilateral









Therefore, from ∆ABC, we have

∠2 + ∠4 + ∠B = 180° (Angle sum property of triangle)

From ∆ACD, we have 

∠1 + ∠3 + ∠D = 180° (Angle sum property of triangle)

Adding the angles on either side, we get;

∠2 + ∠4 + ∠B + ∠1 + ∠3 + ∠D = 360°

⇒ (∠1 + ∠2) + ∠B + (∠3 + ∠4) + ∠D = 360°

⇒ ∠A + ∠B + ∠C + ∠D = 360° [using (i) and (ii)].

Hence, the sum of all the four angles of a quadrilateral is 360°.


Solved examples of angle sum property of a quadrilateral:

1. The angle of a quadrilateral are (3x + 2)°, (x – 3), (2x + 1)°, 2(2x + 5)° respectively. Find the value of x and the measure of each angle.

Solution:            

Using angle sum property of quadrilateral, we get

 (3x + 2)°+ (x – 3)° + (2x + 1)° +  2(2x + 5)°= 360°                 

⇒ 3x + 2 + x - 3 + 2x + 1 + 4x + 10 = 360°

⇒ 10x + 10 = 360                              

⇒ 10x = 360 – 10                              

⇒ 10x = 350                       

⇒ x = 350/10                     

⇒ x = 35                                              

Therefore, (3x + 2) = 3 × 35 + 2 = 105 + 2 = 107°

(x – 3) = 35 – 3 = 32°

(2x + 1) = 2 × 35 + 1 = 70 + 1 = 71°

2(2x + 5) = 2(2 × 35 + 5) = 2(70 + 5) = 2 × 75 = 150°

Therefore, the four angles of the quadrilateral are 32°, 71° 107°, 150° respectively.


2. In a quadrilateral PQRS, PQ + QR + RS + SP < 2 (PR + QS).

Solution:            

Proof of Angle Sum Property of a Quadrilateral









In ∆POS, PO + OS > PS …………… (i)

In ∆SOR, SO + OR > SR …………… (ii)

In ∆QOR, QO + OR > QR …………… (iii)

In ∆POQ, PO + OQ > PQ …………… (iv)

(i) + (ii) + (iii) + (iv) (Using triangle inequality property)

PO + OS + OS + OR + OQ + OR + OP + OQ > PS + SR + QR + PQ

⇒ 2 (OP + OQ + OR + OS) > PQ + QR + CS + DP

⇒ 2 [(OP + OR) + (OQ + OS)] > PQ + QR + CS + DP

⇒ 2 (PR + QS) > PQ + QR + RS + SP


The above examples will help us to solve various types of problems based on angle sum property of a quadrilateral.


7th Grade Math Problems 

8th Grade Math Practice 

From Angle Sum Property of a Quadrilateral to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 11, 24 09:08 AM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More

  3. Points and Line Segment | Two Points in a Curved Surface | Curve Line

    Dec 09, 24 01:08 AM

    Curved Lines and Straight Line
    We will discuss here about points and line segment. We know when two lines meet we get a point. When two points on a plane surface are joined, a straight line segment is obtained.

    Read More

  4. Solid Shapes | Basic Geometric Shapes | Common Solid Figures | Plane

    Dec 08, 24 11:19 PM

    Solid Shapes
    We will discuss about basic solid shapes. We see a variety of solid objects in our surroundings. Solid objects have one or more shapes like the following. Match the objects with similar shape.

    Read More

  5. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 07, 24 03:38 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More