Processing math: 15%

Subscribe to our YouTube channel for the latest videos, updates, and tips.


Amplitude or Argument of a Complex Number

To find the Amplitude or Argument of a complex number let us assume that, a complex number z = x + iy where x > 0 and y > 0 are real, i = √-1 and x2 + y2 ≠ 0; for which the equations x = |z| cos θ and y = |z| sin θ are simultaneously satisfied then, the value of θ is called the Argument (Agr) of z or Amplitude (Amp) of z.

From the above equations x = |z| cos θ and y = |z| sin θ satisfies infinite values of θ and for any infinite values of θ is the value of Arg z. Thus, for any unique value of θ that lies in the interval - π < θ ≤ π and satisfies the above equations x = |z| cos θ and y = |z| sin θ is known as the principal value of Arg z or Amp z and it is denoted as arg z or amp z.

We know that, cos (2nπ + θ) = cos θ and sin (2nπ + θ) = sin θ (where n = 0, ±1, ±2, ±3, .............), then we get,

Amp z = 2nπ + amp z where - π < amp z ≤ π

Algorithm for finding Argument of z = x + iy

Step I: Find the value of tan1 |yx| lying between 0 and \frac{π}{2}. Let it be α.

Step II: Determine in which quadrant the point M(x, y) belongs.

If M (x, y) belongs to the first quadrant, then arg (z) = α.

If M (x, y) belongs to the second quadrant, then arg (z) = π - α.

If M (x, y) belongs to the third quadrant, then arg (z) = - (π - α) or π + α

If M (x, y) belongs to the fourth quadrant, then arg (z) = -α or 2π - α

 

Solved Examples to find the Argument or Amplitude of a complex number:

1. Find the argument of the complex number \frac{i}{1 - i}.

Solution:

The given complex number \frac{i}{1 - i}

Now multiply the numerator and denominator by the conjugate of the denominator i.e., (1 + i), we get

\frac{i(1 + i)}{(1 - i)(1 + i)}

= \frac{i + i^{2})}{(1 - i^{2}}

= \frac{i - 1}{2}

= - \frac{1}{2} + i \frac{1}{2}

We see that in the z-plane the point z = - \frac{1}{2} + i \frac{1}{2} = (-\frac{1}{2}, \frac{1}{2}) lies in the second quadrant. Hence, if amp z = θ then,

tan θ = \frac{\frac{1}{2} }{- \frac{1}{2}} = -1, where \frac{π}{2} < θ ≤ π

Thus, tan θ = -1 = tan (π- \frac{π}{4}) = tan \frac{3π}{4}

Therefore, required argument of \frac{i}{1 - i} is \frac{3π}{4}.

 

2. Find the argument of the complex number 2 + 2√3i.

Solution:

The given complex number 2 + 2√3i

We see that in the z-plane the point z = 2 + 2√3i = (2, 2√3) lies in the first quadrant. Hence, if amp z = θ then,

tan θ = \frac{2√3 }{2} = √3, where θ lying between 0 and \frac{π}{2}.

Thus, tan θ = √3 = tan \frac{π}{3}

Therefore, required argument of 2 + 2√3i is \frac{π}{3}.





11 and 12 Grade Math 

From Amplitude or Argument of a Complex Number to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Average | Word Problem on Average | Questions on Average

    May 17, 25 05:37 PM

    In worksheet on average interest we will solve 10 different types of question. Find the average of first 10 prime numbers. The average height of a family of five is 150 cm. If the heights of 4 family

    Read More

  2. How to Find the Average in Math? | What Does Average Mean? |Definition

    May 17, 25 04:04 PM

    Average 2
    Average means a number which is between the largest and the smallest number. Average can be calculated only for similar quantities and not for dissimilar quantities.

    Read More

  3. Problems Based on Average | Word Problems |Calculating Arithmetic Mean

    May 17, 25 03:47 PM

    Here we will learn to solve the three important types of word problems based on average. The questions are mainly based on average or mean, weighted average and average speed.

    Read More

  4. Rounding Decimals | How to Round a Decimal? | Rounding off Decimal

    May 16, 25 11:13 AM

    Round off to Nearest One
    Rounding decimals are frequently used in our daily life mainly for calculating the cost of the items. In mathematics rounding off decimal is a technique used to estimate or to find the approximate

    Read More

  5. Worksheet on Rounding Off Number | Rounding off Number | Nearest 10

    May 15, 25 05:12 PM

    In worksheet on rounding off number we will solve 10 different types of problems. 1. Round off to nearest 10 each of the following numbers: (a) 14 (b) 57 (c) 61 (d) 819 (e) 7729 2. Round off to

    Read More