# Worksheet on Factorization

Practice the questions given in the Worksheet on Factorization.

Problems on Factorization of expressions of the form a$$^{3}$$ ± b$$^{3}$$

1. Factorize:

(i) 8x$$^{3}$$ + 27y$$^{3}$$

(ii) 216a$$^{3}$$ + 1

(iii) a$$^{6}$$ + 1

(iv) x$$^{3}$$ + $$\frac{1}{x^{3}}$$

(v) a$$^{3}$$ + 8b$$^{6}$$

2. Factorize:

(i) 1 – 729m$$^{3}$$

(ii) 125x$$^{3}$$ – 27y$$^{3}$$

(iii) a$$^{3}$$ - $$\frac{8}{b^{3}}$$

(iv) x$$^{6}$$ – y$$^{3}$$

3. Factorize:

(i) x$$^{6}$$ - 1

(ii) a$$^{6}$$ – 729b$$^{6}$$

4. Factorize a$$^{6}$$ + b$$^{6}$$ and prove that its value is zero if a$$^{4}$$ + b$$^{4}$$ = a$$^{2}$$b$$^{2}$$.

On Factorization of expressions reducible to a$$^{3}$$ ± b$$^{3}$$from

5. Factorize:

(i) x$$^{3}$$ + 3x$$^{2}$$ + 3x + 28

(ii) a$$^{3}$$ + 3a$$^{2}$$ + 3a - 7

(iii) x$$^{3}$$ – 3x – 1 + $$\frac{3}{x}$$ - $$\frac{1}{x^{3}}$$

[Hint: Given expression = x3 - 3x∙ $$\frac{1}{x}$$ ∙ $$\frac{1}{x^{2}}$$ - $$\frac{1}{x^{3}}$$ - 1 = (x - $$\frac{1}{x}$$)3 - 13.]

(iv) a$$^{3}$$ + 7b$$^{3}$$ + 6ab(a + 2b)

[Hint: Given expression = a3 + (2b)3 + 3 ∙ a ∙ 2b(a + 2b) - b3 = (a + 2b)- b3.]

Factorization of expressions of the form a$$^{3}$$ + b$$^{3}$$ + c$$^{3}$$ – 3abc

6. Factorize:

(i) 8 + x$$^{3}$$ + y$$^{3}$$ – 6xy

(ii) a$$^{3}$$ + 8b$$^{3}$$ + 27c$$^{3}$$ – 18abc

Problems on Miscellaneous Factorization

7. Factorize:

(i) (1 – x)$$^{3}$$ + (y – 1)$$^{3}$$ + (x – y)$$^{3}$$

(ii) (2a – b – c)$$^{3}$$ + (2b – c – a)$$^{3}$$ + (2c – a – b)$$^{3}$$

8. Factorize:

(i) x$$^{9}$$ + 1

(ii) a$$^{12}$$ – b$$^{12}$$

(iii) (a + b)$$^{3}$$ + 8(a – b)$$^{3}$$

(iv) a$$^{9}$$ – b$$^{9}$$

9. Factorize:

(i) x$$^{3}$$ + x$$^{2}$$ - 2

[Hint: Given expression = x3 - 1 + x2  - 1  (x - 1)(x2 + x + 1) + (x - 1)(x + 1) = (x - 1)(x2 + x + 1 + x + 1) = (x - 1)(x2 + 2x + 2).]

(ii) a$$^{3}$$ + a$$^{2}$$ - $$\frac{1}{a^{2}}$$ - $$\frac{1}{a^{3}}$$

[Hint: Given expression = a3 - $$\frac{1}{a^{3}}$$ + a2 $$\frac{1}{a^{2}}$$ = (a - $$\frac{1}{a}$$)(a2 + 1 + $$\frac{1}{a^{2}}$$) + (a - $$\frac{1}{a}$$)(a + $$\frac{1}{a}$$)].

Application problems on Factorization

10. (i) If a + $$\frac{1}{a}$$ = 2, find a$$^{3}$$ + $$\frac{1}{a^{3}}$$.

(ii) If x - $$\frac{1}{x}$$ = √3, find x$$^{3}$$ - $$\frac{1}{x^{3}}$$.

(iii) If m + $$\frac{1}{m}$$ = √3, find m$$^{6}$$ - $$\frac{1}{m^{6}}$$.

[Hint: Given expression = m3 + $$\frac{1}{m^{3}}$$ = (m + $$\frac{1}{m}$$)3 - 3m ∙ $$\frac{1}{m}$$ ∙ (m + $$\frac{1}{m}$$) = (√3)3 - 3√3 = 0.

And m6 + $$\frac{1}{m^{6}}$$ = (m3 + $$\frac{1}{m^{3}}$$)(m3 - $$\frac{1}{m^{3}}$$) = 0.]

11. (i) If x + y + z = 6, xyz = 6 and xy + yz + zx = 11 then find x$$^{3}$$ + y$$^{3}$$ + z$$^{3}$$.

[Hint: Use x3 + y3 + z3 - 3xyz = (x + y + z)(x2 + y2 + z2 - yz - zx - xy) = (x + y + z){(x + y + z)2 - 3(yz + zx + xy)}.]

(ii) If l + m + n = 9, l$$^{2}$$+ m$$^{2}$$ + n$$^{2}$$ = 27 and l$$^{3}$$ + m$$^{3}$$ + n$$^{3}$$ = 81 then find lmn.

[Hint: Use l3 + m3 + n3 - 3lmn = (l + m + n)(l2 + m2 + n2 - mn - nl - lm)

and (l + y + z)2 - (l2 + m2 + n2) = 2(mn + nl + lm)}.]

12. Evaluate:

(i) $$\frac{361^{3} + 139^{3}}{361^{2} – 361 × 139 + 139^{2}}$$

(ii) $$\frac{272^{3} - 122^{3}}{136^{2} + 136 × 61 + 61^{2}}$$

13. Find the LCM and HCF.

(i) p$$^{3}$$ + 8 and p$$^{2}$$ + 4

(ii) 1 – 8x$$^{3}$$, 1 – 4x$$^{2}$$ and 1 – x – 2x$$^{2}$$

Answers for the Worksheet on Factorization are given below.

1. (i) (2x + 3y)(4x$$^{2}$$ – 6xy + 9y$$^{2}$$)

(ii) (6a + 1)(36a$$^{2}$$ – 6a + 1)

(iii) (a$$^{2}$$ + 1)(a$$^{4}$$ – a$$^{2}$$ + 1)

(iv) (x + $$\frac{1}{x}$$)(x$$^{2}$$ – 1 + $$\frac{1}{x^{2}}$$

(v) (a + 2b)$$^{2}$$(a$$^{2}$$ – 2ab$$^{2}$$ + 4b$$^{4}$$)

2. (i) (1 + 9m)(1 + 9m + 81m$$^{2}$$)

(ii) (5x – 3y)(25x$$^{2}$$ + 15xy + 9y$$^{2}$$)

(iii) (a - $$\frac{2}{b}$$)(a$$^{2}$$ + $$\frac{2a}{b}$$ + $$\frac{4}{b^{2}}$$

(iv) (x$$^{2}$$ – y)(x$$^{4}$$ + x$$^{2}$$y + y$$^{2}$$)

3. (i) (x + 1)(x – 1)(x$$^{2}$$ + x + 1)(x$$^{2}$$ – x + 1)

(ii) (a + 3b)(a – 3b)(a$$^{2}$$ + 3ab + 9b$$^{2}$$)(a$$^{2}$$ – 3ab + 9b$$^{2}$$)

4. (a$$^{2}$$ + b$$^{2}$$)(a$$^{4}$$ – a$$^{2}$$b$$^{2}$$ + b$$^{4}$$)

5. (i) (x + 4)(x$$^{2}$$ – x + 7)

(ii) (a – 1)(a$$^{2}$$ + 4a + 7)

(iii) (x - $$\frac{1}{x}$$ – 1)(x$$^{2}$$ + x - $$\frac{1}{x}$$ + $$\frac{1}{x^{2}}$$ – 1)

(iv) (a + b)(a$$^{2}$$ + 5ab + 7b$$^{2}$$)

6. (i) (2 + x + y)(4 + x$$^{2}$$ + y$$^{2}$$ – 2x – 2y – xy)

(ii) (a + 2b + 3c)(a$$^{2}$$ + 4b$$^{2}$$ + 9c$$^{2}$$ – 2ab – 3ca – 6bc)

7. (i) 3(1 – x)(y – 1)(x – y)

(ii) 3(2a – b – c)(2b – c – a)(2c – a – b)

8. (i) (x + 1)(x$$^{2}$$ – x + 1)(x$$^{6}$$ – x$$^{3}$$ + 1)

(ii) (a + b)(a – b)(a$$^{2}$$ + b$$^{2}$$)(a$$^{2}$$ – ab + b$$^{2}$$)(a$$^{2}$$ + ab + b$$^{2}$$)(a$$^{4}$$ –a$$^{2}$$b$$^{2}$$ + b$$^{4}$$)

(iii) (3a – b)(3a$$^{2}$$ – 10ab + 7b$$^{2}$$)

(iv) (a – b)(a$$^{2}$$ + ab + b$$^{2}$$)(a$$^{6}$$ + a$$^{3}$$b$$^{3}$$ + b$$^{6}$$)

9. (i) (x – 1)(x$$^{2}$$ + 2x + 2)

(ii) (a - $$\frac{1}{a}$$)(a$$^{2}$$ + a + 1 + $$\frac{1}{a}$$ + $$\frac{1}{a^{2}}$$)

10. (i) 2

(ii) 6√3

(iii) 0

11. (i) 36

(ii) 27

12. (i) 500

(ii) 600

13. (i) LCM = (p + 2)(p – 2)(p$$^{2}$$ – 2p + 4); HCF = p + 2

(ii) LCM = (1 + x)(1 – 2x)(1 + 2x)(1 + 2x + 4x$$^{2}$$); HCF = 1 – 2x

From Worksheet on Factorization to HOME PAGE

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

## Recent Articles

1. ### Estimating Sum and Difference | Reasonable Estimate | Procedure | Math

May 22, 24 06:21 PM

The procedure of estimating sum and difference are in the following examples. Example 1: Estimate the sum 5290 + 17986 by estimating the numbers to their nearest (i) hundreds (ii) thousands.

2. ### Round off to Nearest 1000 |Rounding Numbers to Nearest Thousand| Rules

May 22, 24 06:14 PM

While rounding off to the nearest thousand, if the digit in the hundreds place is between 0 – 4 i.e., < 5, then the hundreds place is replaced by ‘0’. If the digit in the hundreds place is = to or > 5…

3. ### Round off to Nearest 100 | Rounding Numbers To Nearest Hundred | Rules

May 22, 24 05:17 PM

While rounding off to the nearest hundred, if the digit in the tens place is between 0 – 4 i.e. < 5, then the tens place is replaced by ‘0’. If the digit in the units place is equal to or >5, then the…

4. ### Round off to Nearest 10 |How To Round off to Nearest 10?|Rounding Rule

May 22, 24 03:49 PM

Round off to nearest 10 is discussed here. Rounding can be done for every place-value of number. To round off a number to the nearest tens, we round off to the nearest multiple of ten. A large number…