Processing math: 54%

Subscribe to our YouTube channel for the latest videos, updates, and tips.


Worksheet on Factorization

Practice the questions given in the Worksheet on Factorization.

Problems on Factorization of expressions of the form a3 ± b3

1. Factorize:

(i) 8x3 + 27y3

(ii) 216a3 + 1

(iii) a6 + 1

(iv) x3 + 1x3

(v) a3 + 8b6

2. Factorize:

(i) 1 – 729m3

(ii) 125x3 – 27y3

(iii) a3 - 8b3

(iv) x6 – y3

 

3. Factorize:

(i) x6 - 1

(ii) a6 – 729b6

 

4. Factorize a6 + b6 and prove that its value is zero if a4 + b4 = a2b2.


On Factorization of expressions reducible to a3 ± b3from

5. Factorize:

(i) x3 + 3x2 + 3x + 28

(ii) a3 + 3a2 + 3a - 7

(iii) x3 – 3x – 1 + 3x - 1x3

[Hint: Given expression = x3 - 3x∙ 1x ∙ 1x21x3 - 1 = (x - 1x)3 - 13.]

(iv) a3 + 7b3 + 6ab(a + 2b)

[Hint: Given expression = a3 + (2b)3 + 3 ∙ a ∙ 2b(a + 2b) - b3 = (a + 2b)- b3.]

 

Factorization of expressions of the form a3 + b3 + c3 – 3abc

6. Factorize:

(i) 8 + x3 + y3 – 6xy

(ii) a3 + 8b3 + 27c3 – 18abc

 

Problems on Miscellaneous Factorization

7. Factorize:

(i) (1 – x)3 + (y – 1)3 + (x – y)3

(ii) (2a – b – c)3 + (2b – c – a)3 + (2c – a – b)3

 

8. Factorize:

(i) x9 + 1

(ii) a12 – b12

(iii) (a + b)3 + 8(a – b)3

(iv) a9 – b9

 

9. Factorize:

(i) x3 + x2 - 2

[Hint: Given expression = x3 - 1 + x2  - 1  (x - 1)(x2 + x + 1) + (x - 1)(x + 1) = (x - 1)(x2 + x + 1 + x + 1) = (x - 1)(x2 + 2x + 2).]

(ii) a3 + a2 - 1a2 - 1a3

[Hint: Given expression = a3 - 1a3 + a2 1a2 = (a - 1a)(a2 + 1 + 1a2) + (a - 1a)(a + 1a)].


Application problems on Factorization

10. (i) If a + 1a = 2, find a3 + 1a3.

(ii) If x - 1x = √3, find x3 - 1x3.

(iii) If m + 1m = √3, find m6 - 1m6.

[Hint: Given expression = m3 + 1m3 = (m + 1m)3 - 3m ∙ 1m ∙ (m + 1m) = (√3)3 - 3√3 = 0.

And m6 + 1m6 = (m3 + 1m3)(m3 - 1m3) = 0.]

11. (i) If x + y + z = 6, xyz = 6 and xy + yz + zx = 11 then find x3 + y3 + z3.

[Hint: Use x3 + y3 + z3 - 3xyz = (x + y + z)(x2 + y2 + z2 - yz - zx - xy) = (x + y + z){(x + y + z)2 - 3(yz + zx + xy)}.]

(ii) If l + m + n = 9, l2+ m2 + n2 = 27 and l3 + m3 + n3 = 81 then find lmn.

[Hint: Use l3 + m3 + n3 - 3lmn = (l + m + n)(l2 + m2 + n2 - mn - nl - lm)

and (l + y + z)2 - (l2 + m2 + n2) = 2(mn + nl + lm)}.]


12. Evaluate:

(i) \frac{361^{3} + 139^{3}}{361^{2} – 361 × 139 + 139^{2}}

(ii) \frac{272^{3} - 122^{3}}{136^{2} + 136 × 61 + 61^{2}}


13. Find the LCM and HCF.

(i) p^{3} + 8 and p^{2} + 4

(ii) 1 – 8x^{3}, 1 – 4x^{2} and 1 – x – 2x^{2}


Answers for the Worksheet on Factorization are given below.

 

Answers:

 

1. (i) (2x + 3y)(4x^{2} – 6xy + 9y^{2})

(ii) (6a + 1)(36a^{2} – 6a + 1)

(iii) (a^{2} + 1)(a^{4} – a^{2} + 1)

(iv) (x + \frac{1}{x})(x^{2} – 1 + \frac{1}{x^{2}}

(v) (a + 2b)^{2}(a^{2} – 2ab^{2} + 4b^{4})

 

2. (i) (1 + 9m)(1 + 9m + 81m^{2})

(ii) (5x – 3y)(25x^{2} + 15xy + 9y^{2})

(iii) (a - \frac{2}{b})(a^{2} + \frac{2a}{b} + \frac{4}{b^{2}}

(iv) (x^{2} – y)(x^{4} + x^{2}y + y^{2})

 

3. (i) (x + 1)(x – 1)(x^{2} + x + 1)(x^{2} – x + 1)

(ii) (a + 3b)(a – 3b)(a^{2} + 3ab + 9b^{2})(a^{2} – 3ab + 9b^{2})

 

4. (a^{2} + b^{2})(a^{4} – a^{2}b^{2} + b^{4})

5. (i) (x + 4)(x^{2} – x + 7)

(ii) (a – 1)(a^{2} + 4a + 7)

(iii) (x - \frac{1}{x} – 1)(x^{2} + x - \frac{1}{x} + \frac{1}{x^{2}} – 1)

(iv) (a + b)(a^{2} + 5ab + 7b^{2})

 

6. (i) (2 + x + y)(4 + x^{2} + y^{2} – 2x – 2y – xy)

(ii) (a + 2b + 3c)(a^{2} + 4b^{2} + 9c^{2} – 2ab – 3ca – 6bc)

 

7. (i) 3(1 – x)(y – 1)(x – y)

(ii) 3(2a – b – c)(2b – c – a)(2c – a – b)

 

8. (i) (x + 1)(x^{2} – x + 1)(x^{6} – x^{3} + 1)

(ii) (a + b)(a – b)(a^{2} + b^{2})(a^{2} – ab + b^{2})(a^{2} + ab + b^{2})(a^{4} –a^{2}b^{2} + b^{4})

(iii) (3a – b)(3a^{2} – 10ab + 7b^{2})

(iv) (a – b)(a^{2} + ab + b^{2})(a^{6} + a^{3}b^{3} + b^{6})

 

9. (i) (x – 1)(x^{2} + 2x + 2)

(ii) (a - \frac{1}{a})(a^{2} + a + 1 + \frac{1}{a} + \frac{1}{a^{2}})

 

10. (i) 2

(ii) 6√3

(iii) 0

 

11. (i) 36

(ii) 27


12. (i) 500

(ii) 600


13. (i) LCM = (p + 2)(p – 2)(p^{2} – 2p + 4); HCF = p + 2

(ii) LCM = (1 + x)(1 – 2x)(1 + 2x)(1 + 2x + 4x^{2}); HCF = 1 – 2x





9th Grade Math

From Worksheet on Factorization to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Average | Word Problem on Average | Questions on Average

    May 17, 25 05:37 PM

    In worksheet on average interest we will solve 10 different types of question. Find the average of first 10 prime numbers. The average height of a family of five is 150 cm. If the heights of 4 family

    Read More

  2. How to Find the Average in Math? | What Does Average Mean? |Definition

    May 17, 25 04:04 PM

    Average 2
    Average means a number which is between the largest and the smallest number. Average can be calculated only for similar quantities and not for dissimilar quantities.

    Read More

  3. Problems Based on Average | Word Problems |Calculating Arithmetic Mean

    May 17, 25 03:47 PM

    Here we will learn to solve the three important types of word problems based on average. The questions are mainly based on average or mean, weighted average and average speed.

    Read More

  4. Rounding Decimals | How to Round a Decimal? | Rounding off Decimal

    May 16, 25 11:13 AM

    Round off to Nearest One
    Rounding decimals are frequently used in our daily life mainly for calculating the cost of the items. In mathematics rounding off decimal is a technique used to estimate or to find the approximate

    Read More

  5. Worksheet on Rounding Off Number | Rounding off Number | Nearest 10

    May 15, 25 05:12 PM

    In worksheet on rounding off number we will solve 10 different types of problems. 1. Round off to nearest 10 each of the following numbers: (a) 14 (b) 57 (c) 61 (d) 819 (e) 7729 2. Round off to

    Read More