Symmetric Functions of Roots of a Quadratic Equation

Let α and β be the roots of the quadratic equation ax\(^{2}\) + bx + c = 0, (a ≠ 0), then the expressions of the form α + β, αβ, α\(^{2}\) + β\(^{2}\), α\(^{2}\) - β\(^{2}\), 1/α^2 + 1/β^2 etc. are known as functions of the roots α and β.

If the expression doesn’t change on interchanging α and β, then it is known as symmetric. In other words, an expression in α and β which remains same when α and β are interchanged, is called symmetric function in α and β.

Thus \(\frac{α^{2}}{β}\) + \(\frac{β^{2}}{α}\) is a symmetric function while α\(^{2}\) - β\(^{2}\) is not a symmetric function. The expressions α + β and αβ are called elementary symmetric functions.

We know that for the quadratic equation ax\(^{2}\) + bx + c = 0, (a ≠ 0), the value of α + β = -\(\frac{b}{a}\) and αβ = \(\frac{c}{a}\). To evaluate of a symmetric function of the roots of a quadratic equation in terms of its coefficients; we always express it in terms of α + β and αβ.

With the above information, the values of other functions of α and β can be determined:

(i) α\(^{2}\) + β\(^{2}\) = (α + β)\(^{2}\) - 2αβ

(ii) (α - β)\(^{2}\) = (α + β)\(^{2}\) - 4αβ

(iii) α\(^{2}\) - β\(^{2}\) = (α + β)(α - β) = (α + β) √{(α + β)^2 - 4αβ}

(iv) α\(^{3}\) + β\(^{3}\) = (α + β)\(^{3}\) - 3αβ(α + β)

(v) α\(^{3}\) - β\(^{3}\) = (α - β)(α\(^{2}\) + αβ + β\(^{2}\))

(vi) α\(^{4}\) + β\(^{4}\) = (α\(^{2}\) + β\(^{2}\))\(^{2}\) - 2α\(^{2}\)β\(^{2}\)

(vii) α\(^{4}\) - β\(^{4}\) = (α + β)(α - β)(α\(^{2}\) + β\(^{2}\)) = (α + β)(α - β)[(α + β)\(^{2}\) - 2αβ]

 

Solved example to find the symmetric functions of roots of a quadratic equation:

If α and β are the roots of the quadratic ax\(^{2}\) + bx + c = 0, (a ≠ 0), determine the values of the following expressions in terms of a, b and c.

(i) \(\frac{1}{α}\) + \(\frac{1}{β}\)

(ii) \(\frac{1}{α^{2}}\) + \(\frac{1}{β^{2}}\)

Solution:

Since, α and β are the roots of ax\(^{2}\) + bx + c = 0,
α + β = -\(\frac{b}{a}\) and αβ = \(\frac{c}{a}\)

(i) \(\frac{1}{α}\) + \(\frac{1}{β}\)

= \(\frac{α + β}{αβ}\) = -b/a/c/a = -b/c


(ii) \(\frac{1}{α^{2}}\) + \(\frac{1}{β^{2}}\)

= α^2 + β^2/α^2β^2

= (α + β)\(^{2}\) - 2αβ/(αβ)^2

= (-b/a)^2 – 2c/a/(c/a)^2 = b^2 -2ac/c^2




11 and 12 Grade Math 

From Symmetric Functions of Roots of a Quadratic Equation to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Perimeter of a Square | How to Find the Perimeter of Square? |Examples

    Apr 25, 24 05:34 PM

    Perimeter of a Square
    We will discuss here how to find the perimeter of a square. Perimeter of a square is the total length (distance) of the boundary of a square. We know that all the sides of a square are equal. Perimete…

    Read More

  2. Perimeter of a Triangle | Perimeter of a Triangle Formula | Examples

    Apr 25, 24 05:13 PM

    Perimeter of a Triangle
    We will discuss here how to find the perimeter of a triangle. We know perimeter of a triangle is the total length (distance) of the boundary of a triangle. Perimeter of a triangle is the sum of length…

    Read More

  3. Perimeter of a Rectangle | How to Find the Perimeter of a Rectangle?

    Apr 25, 24 03:45 PM

    Perimeter of a Rectangle
    We will discuss here how to find the perimeter of a rectangle. We know perimeter of a rectangle is the total length (distance) of the boundary of a rectangle. ABCD is a rectangle. We know that the opp…

    Read More

  4. Dividing 3-Digit by 1-Digit Number | Long Division |Worksheet Answer

    Apr 24, 24 03:46 PM

    Dividing 3-Digit by 1-Digit Number
    Dividing 3-Digit by 1-Digit Numbers are discussed here step-by-step. How to divide 3-digit numbers by single-digit numbers? Let us follow the examples to learn to divide 3-digit number by one-digit nu…

    Read More

  5. Symmetrical Shapes | One, Two, Three, Four & Many-line Symmetry

    Apr 24, 24 03:45 PM

    Symmetrical Figures
    Symmetrical shapes are discussed here in this topic. Any object or shape which can be cut in two equal halves in such a way that both the parts are exactly the same is called symmetrical. The line whi…

    Read More