Reflection in Lines Parallel to Axes

We will discuss here how to solve the problems on reflection in lines parallel to axes (x = a or y = b).

 The coordinates of the points P and Q are (5, -4) and (-2, 10) respectively.

(i) Find the point P’ and Q’onto which the points P and Q map on reflection in the line AB which is parallel to the x-axis and is at a distance 3 on the positive side of the y-axis.

(ii) Find the point P” and Q”onto which the points P and Q map on reflection in the line CD which is parallel to the y-axis and is at a distance 3 on the negative side of the x-axis.

Solution:

(i) We know that the image of the point (x, y) in the line parallel to the x-axis and at a distance a from the x-axis in the positive side of the y-axis is the point (x, -y + 2a). Here, a = 3 and the coordinates of P are (5, -4). So, the coordinates of P’ are (5, -(-4) + 2 × 3), i.e., (5, 10). The coordinates of Q are (-2, 10). So the coordinates of Q’ are (-2, -10 + 2 × 3), i.e., (-2, -4).

(ii) We know that the image of the point (x, y) in the line parallel to the y-axis and at a distance a from the y-axis in the negative side of the x-axis is the point (-x + 2a, y). Here, the coordinates of P are (5, -4) and a = -3. So, the coordinates of P” are (-5 + 2 (-3), -4), i.e., (-11, -4). The coordinates of Q are (-2, 10). So the coordinates of Q” are (2 + 2(-3), 10), i.e., (-4, 10).




10th Grade Math

From Reflection in Lines Parallel to Axes  to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.