Properties of Complex Numbers

We will discuss here about the different properties of complex numbers.

1. When a, b are real numbers and a + ib = 0 then a = 0, b = 0

Proof:

According to the property,

 a + ib = 0 = 0 + i  0,

Therefore, from the definition of equality of two complex numbers we conclude that, x = 0 and y = 0.

 

2. When a, b, c and d are real numbers and a + ib = c + id then a = c and b = d.

Proof:

According to the property,

a + ib = c + id and a, b, c and d are real numbers.

Therefore, from the definition of equality of two complex numbers we conclude that, a = c and b = d.


3. For any three the set complex numbers z\(_{1}\), z\(_{2}\) and z\(_{3}\) satisfies the commutative, associative and distributive laws.

(i) z\(_{1}\) + z\(_{2}\) = z\(_{2}\) + z\(_{1}\) (Commutative law for addition).

(ii) z\(_{1}\) z\(_{2}\) = z\(_{2}\) z\(_{1}\) (Commutative law for multiplication).

(iii) (z\(_{1}\) + z\(_{2}\)) + z\(_{3}\) = z\(_{1}\) + (z\(_{2}\) + z\(_{3}\)) (Associative law for addition)

(iv) (z\(_{1}\)z\(_{2}\))z\(_{3}\) = z\(_{1}\)(z\(_{2}\)z\(_{3}\)) (Associative law for multiplication)

(v) z\(_{1}\)(z\(_{1}\) + z\(_{3}\)) = z\(_{1}\)z\(_{2}\) + z\(_{1}\)z\(_{3}\) (Distributive law).

 

4. The sum of two conjugate complex numbers is real.

Proof:

Let, z = a + ib (a, b are real numbers) be a complex number. Then, conjugate of z is \(\overline{z}\) = a - ib.

Now, z + \(\overline{z}\) = a + ib + a - ib = 2a, which is real.


5. The product of two conjugate complex numbers is real.

Proof:

Let, z = a + ib (a, b are real number) be a complex number. Then, conjugate of z is \(\overline{z}\) = a - ib.

\(\overline{z}\) = (a + ib)(a - ib) = a\(^{2}\) - i\(^{2}\)b\(^{2}\) = a\(^{2}\) + b\(^{2}\), (Since i\(^{2}\) = -1), which is real.


Note: When z = a + ib then |z| = \(\sqrt{a^{2} + b^{2}}\)and, z\(\overline{z}\) = a\(^{2}\) + b\(^{2}\)

Hence, \(\sqrt{z\overline{z}}\) = \(\sqrt{a^{2} + b^{2}}\)

Therefore, |z| = \(\sqrt{z\overline{z}}\)

Thus, modulus of any complex number is equal to the positive square root of the product of the complex number and its conjugate complex number.

 

6. When the sum of two complex numbers is real and the product of two complex numbers is also real then the complex numbers are conjugate to each other.

Proof:

Let, z\(_{1}\) = a + ib and z\(_{2}\) = c + id be two complex quantities (a, b, c, d and real and b ≠ 0, d ≠0).

According to the property,

z\(_{1}\) + z\(_{2}\) = a+ ib + c + id = (a + c) + i(b + d) is real.

Therefore, b + d = 0

⇒ d = -b

And,

z\(_{1}\)z\(_{2}\) = (a + ib)(c + id) = (a + ib)(c +id) = (ac – bd) + i(ad + bc) is real.

Therefore, ad + bc = 0

⇒ -ab + bc = 0, (Since, d = -b)

⇒ b(c - a) = 0

⇒ c = a (Since, b ≠ 0)

Hence, z\(_{2}\) = c + id = a + i(-b) = a - ib = \(\overline{z_{1}}\)

Therefore, we conclude that z\(_{1}\) and z\(_{2}\) are conjugate to each other.


7. |z\(_{1}\) + z\(_{2}\)| ≤ |z\(_{1}\)| + |z\(_{2}\)|, for two complex numbers z\(_{1}\) and z\(_{2}\).






11 and 12 Grade Math 

From Properties of Complex Numbers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Perimeter of a Square | How to Find the Perimeter of Square? |Examples

    Apr 25, 24 05:34 PM

    Perimeter of a Square
    We will discuss here how to find the perimeter of a square. Perimeter of a square is the total length (distance) of the boundary of a square. We know that all the sides of a square are equal. Perimete…

    Read More

  2. Perimeter of a Triangle | Perimeter of a Triangle Formula | Examples

    Apr 25, 24 05:13 PM

    Perimeter of a Triangle
    We will discuss here how to find the perimeter of a triangle. We know perimeter of a triangle is the total length (distance) of the boundary of a triangle. Perimeter of a triangle is the sum of length…

    Read More

  3. Perimeter of a Rectangle | How to Find the Perimeter of a Rectangle?

    Apr 25, 24 03:45 PM

    Perimeter of a Rectangle
    We will discuss here how to find the perimeter of a rectangle. We know perimeter of a rectangle is the total length (distance) of the boundary of a rectangle. ABCD is a rectangle. We know that the opp…

    Read More

  4. Dividing 3-Digit by 1-Digit Number | Long Division |Worksheet Answer

    Apr 24, 24 03:46 PM

    Dividing 3-Digit by 1-Digit Number
    Dividing 3-Digit by 1-Digit Numbers are discussed here step-by-step. How to divide 3-digit numbers by single-digit numbers? Let us follow the examples to learn to divide 3-digit number by one-digit nu…

    Read More

  5. Symmetrical Shapes | One, Two, Three, Four & Many-line Symmetry

    Apr 24, 24 03:45 PM

    Symmetrical Figures
    Symmetrical shapes are discussed here in this topic. Any object or shape which can be cut in two equal halves in such a way that both the parts are exactly the same is called symmetrical. The line whi…

    Read More