Problems on Principle of Mathematical Induction



Solved Problems on Principle of Mathematical Induction are shown here to prove Mathematical Induction.



Problems on Principle of Mathematical Induction

1. Using the principle of mathematical induction, prove that

12 + 22 + 32 + ..... + n2 = (1/6){n(n + 1)(2n + 1} for all n ∈ N.


Solution:

Let the given statement be P(n). Then,

P(n): 12 + 22 + 32 + ..... +n2 = (1/6){n(n + 1)(2n + 1)}.

Putting n =1 in the given statement, we get

LHS = 12 = 1 and RHS = (1/6) × 1 × 2 × (2 × 1 + 1) = 1.

Therefore LHS = RHS.

Thus, P(1) is true.

Let P(k) be true. Then,

P(k): 12 + 22 + 32 + ..... + k2 = (1/6){k(k + 1)(2k + 1)}.

Now,12 + 22 + 32 + ......... + k2 + (k + 1)2

                    = (1/6) {k(k + 1)(2k + 1) + (k + 1)2

                    = (1/6){(k + 1).(k(2k + 1)+6(k + 1))}

                    = (1/6){(k + 1)(2k2 + 7k + 6})

                    = (1/6){(k + 1)(k + 2)(2k + 3)}

                    = 1/6{(k + 1)(k + 1 + 1)[2(k + 1) + 1]}

⇒ P(k + 1): 12 + 22 + 32 + ….. + k2 + (k+1)2

                    = (1/6){(k + 1)(k + 1 + 1)[2(k + 1) + 1]}

⇒ P(k + 1) is true, whenever P(k) is true.

Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.

Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.



Problems on Principle of Mathematical Induction

2. Using the principle of mathematical induction, prove that

1 ∙ 2 + 2 ∙ 3 + 3 ∙ 4 + ..... + n(n + 1) = (1/3){n(n + 1)(n + 2)}.


Solution:

Let the given statement be P(n). Then,

P(n): 1 ∙ 2 + 2 ∙ 3 + 3 ∙ 4 + ..... + n(n + 1) = (1/3){n(n + 1)(n + 2)}.

Thus, the given statement is true for n = 1, i.e., P(1) is true.

Let P(k) be true. Then,

P(k): 1 ∙ 2 + 2 ∙ 3 + 3 ∙ 4 + ..... + k(k + 1) = (1/3){k(k + 1)(k + 2)}.

Now, 1 ∙ 2 + 2 ∙ 3 + 3 ∙ 4 +...+ k(k + 1) + (k + 1)(k + 2)

          = (1 ∙ 2 + 2 ∙ 3 + 3 ∙ 4 + ....... + k(k + 1)) + (k + 1)(k + 2)

          = (1/3) k(k + 1)(k + 2) + (k + 1)(k + 2) [using (i)]

          = (1/3) [k(k + 1)(k + 2) + 3(k + 1)(k + 2)

          = (1/3){(k + 1)(k + 2)(k + 3)}

⇒ P(k + 1): 1 ∙ 2 + 2 ∙ 3 + 3 ∙ 4 +......+ (k + 1)(k + 2)

                     = (1/3){k + 1 )(k + 2)(k +3)}

⇒ P(k + 1) is true, whenever P(k) is true.

Thus, P(1) is true and P(k + 1)is true, whenever P(k) is true.

Hence, by the principle of mathematical induction, P(n) is true for all values of ∈ N.



Problems on Principle of Mathematical Induction

3. Using the principle of mathematical induction, prove that

1 ∙ 3 + 3 ∙ 5 + 5 ∙ 7 +.....+ (2n - 1)(2n + 1) = (1/3){n(4n2 + 6n - 1).


Solution:

Let the given statement be P(n). Then,

P(n): 1 ∙ 3 + 3 ∙ 5 + 5 ∙ 7 +...... + (2n - 1)(2n + 1)= (1/3)n(4n2 + 6n - 1).

When n = 1, LHS = 1 ∙ 3 = 3 and RHS = (1/3) × 1 × (4 × 12 + 6 × 1 - 1)

                                                   = {(1/3) × 1 × 9} = 3.

LHS = RHS.

Thus, P(1) is true.

Let P(k) be true. Then,

P(k): 1 ∙ 3 + 3 ∙ 5 + 5 ∙ 7 + ….. + (2k - 1)(2k + 1) = (1/3){k(4k2 + 6k - 1) ......(i)

Now,

1 ∙ 3 + 3 ∙ 5 + 5 ∙ 7 + …….. + (2k - 1)(2k + 1) + {2k(k + 1) - 1}{2(k + 1) + 1}

    = {1 ∙ 3 + 3 ∙ 5 + 5 ∙ 7 + ………… + (2k - 1)(2k + 1)} + (2k + 1)(2k + 3)

          = (1/3) k(4k2 + 6k - 1) + (2k + 1)(2k + 3) [using (i)]

          = (1/3) [(4k3 + 6k2 - k) + 3(4k2 + 8k + 3)]

          = (1/3)(4k3 + 18k2 + 23k + 9)

          = (1/3){(k + 1)(4k2 + 14k + 9)}

          = (1/3)[k + 1){4k(k + 1) 2 + 6(k + 1) - 1}]

⇒ P(k + 1): 1 ∙ 3 + 3 ∙ 5 + 5 ∙ 7 + ..... + (2k + 1)(2k + 3)

           = (1/3)[(k + 1){4(k + 1)2 + 6(k + 1) - 1)}]

⇒ P(k + 1) is true, whenever P(k) is true.

Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.

Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.



More Problems on Principle of Mathematical Induction

4. Using the principle of mathematical induction, prove that

1/(1 ∙ 2) + 1/(2 ∙ 3) + 1/(3 ∙ 4) + ..... + 1/{n(n + 1)} = n/(n + 1)


Solution:

Let the given statement be P(n). Then,

P(n): 1/(1 ∙ 2) + 1/(2 ∙ 3) + 1/(3 ∙ 4) + ..... + 1/{n(n + 1)} = n/(n + 1).

Putting n = 1 in the given statement, we get

LHS= 1/(1 ∙ 2) = and RHS = 1/(1 + 1) = 1/2.

LHS = RHS.

Thus, P(1) is true.

Let P(k) be true. Then,

P(k): 1/(1 ∙ 2) + 1/(2 ∙ 3) + 1/(3 ∙ 4) + ..... + 1/{k(k + 1)} = k/(k + 1) ..…(i)

Now 1/(1 ∙ 2) + 1/(2 ∙ 3) + 1/(3 ∙ 4) + ..... + 1/{k(k + 1)} + 1/{(k + 1)(k + 2)}

[1/(1 ∙ 2) + 1/(2 ∙ 3) + 1/(3 ∙ 4) + ..... + 1/{k(k + 1)}] + 1/{(k + 1)(k + 2)}

= k/(k + 1)+1/{ (k + 1)(k + 2)}.

{k(k + 2) + 1}/{(k + 1)2/[(k + 1)k + 2)] using …(ii)

= {k(k + 2) + 1}/{(k + 1)(k + 2}

= {(k + 1)2 }/{(k + 1)(k + 2)}

= (k + 1)/(k + 2) = (k + 1)/(k + 1 + 1)

⇒ P(k + 1): 1/(1 ∙ 2) + 1/(2 ∙ 3) + 1/(3 ∙ 4) + ……… + 1/{ k(k + 1)} + 1/{(k + 1)(k + 2)}

                    = (k + 1)/(k + 1 + 1)

⇒ P(k + 1) is true, whenever P(k) is true.

Thus, P(1) is true and P(k + 1)is true, whenever P(k) is true.

Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.

Problems on Principle of Mathematical Induction



5. Using the principle of mathematical induction, prove that

{1/(3 ∙ 5)} + {1/(5 ∙ 7)} + {1/(7 ∙ 9)} + ….... + 1/{(2n + 1)(2n + 3)} = n/{3(2n + 3)}.


Solution:

Let the given statement be P(n). Then,

P(n): {1/(3 ∙ 5) + 1/(5 ∙ 7) + 1/(7 ∙ 9) + ……. + 1/{(2n + 1)(2n + 3)} = n/{3(2n + 3).

Putting n = 1 in the given statement, we get

and LHS = 1/(3 ∙ 5) = 1/15 and RHS = 1/{3(2 × 1 + 3)} = 1/15.

LHS = RHS

Thus , P(1) is true.

Let P(k) be true. Then,

P(k): {1/(3 ∙ 5) + 1/(5 ∙ 7) + 1/(7 ∙ 9) + …….. + 1/{(2k + 1)(2k + 3)} = k/{3(2k + 3)} ….. (i)

Now, 1/(3 ∙ 5) + 1/(5 ∙ 7) + ..…… + 1/[(2k + 1)(2k + 3)] + 1/[{2(k + 1) + 1}2(k + 1) + 3

          = {1/(3 ∙ 5) + 1/(5 ∙ 7) + ……. + [1/(2k + 1)(2k + 3)]} + 1/{(2k + 3)(2k + 5)}

          = k/[3(2k + 3)] + 1/[2k + 3)(2k + 5)] [using (i)]

           = {k(2k + 5) + 3}/{3(2k + 3)(2k + 5)}

          = (2k2 + 5k + 3)/[3(2k + 3)(2k + 5)]

          = {(k + 1)(2k + 3)}/{3(2k + 3)(2k + 5)}

           = (k + 1)/{3(2k + 5)}

          = (k + 1)/[3{2(k + 1) + 3}]

= P(k + 1): 1/(3 ∙ 5) + 1/(5 ∙ 7) + …….. + 1/[2k + 1)(2k + 3)] + 1/[{2(k + 1) + 1}{2(k + 1) + 3}]

                    = (k + 1)/{3{2(k + 1) + 3}]

⇒ P(k + 1) is true, whenever P(k) is true.

Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.

Hence, by the principle of mathematical induction, P(n) is true for n ∈ N.



Problems on Principle of Mathematical Induction

6. Using the principle of mathematical induction, prove that

1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + …….. + 1/{n(n + 1)(n + 2)} = {n(n + 3)}/{4(n + 1)(n + 2)} for all n ∈ N.


Solution:

Let P (n): 1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + ……. + 1/{n(n + 1)(n + 2)} = {n(n + 3)}/{4(n + 1)(n + 2)} .

Putting n = 1 in the given statement, we get

LHS = 1/(1 ∙ 2 ∙ 3) = 1/6 and RHS = {1 × (1 + 3)}/[4 × (1 + 1)(1 + 2)] = ( 1 × 4)/(4 × 2 × 3) = 1/6.

Therefore LHS = RHS.

Thus, the given statement is true for n = 1, i.e., P(1) is true.

Let P(k) be true. Then,

P(k): 1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + ……... + 1/{k(k + 1)(k + 2)} = {k(k + 3)}/{4(k + 1)(k + 2)}. …….(i)

Now, 1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + ………….. + 1/{k(k + 1)(k + 2)} + 1/{(k + 1)(k + 2)(k + 3)}

           = [1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + ………..…. + 1/{ k(k + 1)(k + 2}] + 1/{(k + 1)(k + 2)(k + 3)}

           = [{k(k + 3)}/{4(k + 1)(k + 2)} + 1/{(k + 1)(k + 2)(k + 3)}]
                                                            [using(i)]

           = {k(k + 3)2 + 4}/{4(k + 1)(k + 2)(k + 3)}

           = (k3 + 6k2 + 9k + 4)/{4(k + 1)(k + 2)(k + 3)}

           = {(k + 1)(k + 1)(k + 4)}/{4 (k + 1)(k + 2)(k + 3)}

           = {(k + 1)(k + 4)}/{4(k + 2)(k + 3)

⇒ P(k + 1): 1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + ……….….. + 1/{(k + 1)(k + 2)(k + 3)}

                    = {(k + 1)(k + 2)}/{4(k + 2)(k + 3)}

⇒ P(k + 1) is true, whenever P(k) is true.

Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.

Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.



Problems on Principle of Mathematical Induction

7. Using the Principle of mathematical induction, prove that

{1 - (1/2)}{1 - (1/3)}{1 - (1/4)} ….... {1 - 1/(n + 1)} = 1/(n + 1) for all n ∈ N.


Solution:

Let the given statement be P(n). Then,

P(n): {1 - (1/2)}{1 - (1/3)}{1 - (1/4)} ….... {1 - 1/(n + 1)} = 1/(n + 1).

When n = 1, LHS = {1 – (1/2)} = ½ and RHS = 1/(1 + 1) = ½.

Therefore LHS = RHS.

Thus, P(1) is true.

Let P(k) be true. Then,

P(k): {1 - (1/2)}{1 - (1/3)}{1 - (1/4)} ….... [1 - {1/(k + 1)}] = 1/(k + 1)

Now, [{1 - (1/2)}{1 - (1/3)}{1 - (1/4)} ….... [1 - {1/(k + 1)}] ∙ [1 – {1/(k + 2)}]

           = [1/(k + 1)] ∙ [{(k + 2 ) - 1}/(k + 2)}]

           = [1/(k + 1)] ∙ [(k + 1)/(k + 2)]

           = 1/(k + 2)

Therefore p(k + 1): [{1 - (1/2)}{1 - (1/3)}{1 - (1/4)} ….... [1 - {1/(k + 1)}] = 1/(k + 2)

⇒ P(k + 1) is true, whenever P(k) is true.

Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.

Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.

Problems on Principle of Mathematical Induction



Mathematical Induction
  • Mathematical Induction
  • Problems on Principle of Mathematical Induction
  • Proof by Mathematical Induction
  • Induction Proof

  • 11 and 12 Grade Math

    From Problems on Principle of Mathematical Induction to HOME PAGE