Factorization by Using Identities

Factorization by using identities will help us to factorize an algebraic expression easily.

The following identities are:

(i) (a + b)2 = a2 + 2ab +b2,

(ii) (a - b)2 = a2 - 2ab + b2 and

(iii) a2 – b2 = (a + b)(a – b).

Now we will use these identities to factorize the given algebraic expressions.


Solved examples on factorization by using identities:

1. Factorize using the formula of square of the sum of two terms: 

(i) z2 + 6z + 9

Solution:

We can express z2 + 6z + 9 as using a2 + 2ab + b2 = (a + b)2

= (z)2 + 2(z)(3) + (3)2

= (z + 3)2

= (z + 3)(z + 3)


(ii) x2 + 10x + 25

Solution:

We can express x2 + 10x + 25 as using a2 + 2ab + b2 = (a + b)2

= (x)2 + 2 ( x)( 5) + (5)2

= (x + 5)2

= (x + 5)(x - 5)



2. Factorize using the formula of square of the difference of two terms:

(i) 4m2 – 12mn + 9n2

Solution:

We can express 4m2 – 12mn + 9n2 as using a2 - 2ab + b2 = (a - b)2

= (2m)2 - 2(2m)(3n) + (3n)2

= (2m – 3n)2

= (2m - 3n)(2m - 3n)


(ii) x2 - 20x + 100

Solution:

We can express x2 - 20x + 100 as using a2 - 2ab + b2 = (a - b)2

= (x)2 - 2(x)(10) + (10)2

= (x - 10)2

=(x - 10)(x - 10)




3. Factorize using the formula of difference of two squares:

(i) 25x2 - 49

Solution:

We can express 25x2 - 49 as using a2 – b2 = (a + b)(a - b).

= (5x)2 - (7)2

= (5x + 7)(5x - 7)


(ii) 16x2 – 36y2

Solution:

We can express 16x2 – 36y2 as using a2 – b2 = (a + b)(a - b).

= (4x)2 - (6y)2

= (4x + 6y)(4x – 6y)


(iii) 1 – 25(2a – 5b)2

Solution:

We can express 1 – 25(2a – 5b)2 as using a2 – b2 = (a + b)(a - b).

= (1)2 - [5(2a – 5b)]2

= [1 + 5(2a – 5b)] [1 - 5(2a – 5b)]

= (1 + 10a – 25b) (1 – 10a + 25b)



4. Factor completely using the formula of difference of two squares: m4 – n4

Solution:

m4 – n4

We can express m4 – n4 as using a2 – b2 = (a + b)(a - b).

= (m2)2 - (n2)2

= (m2 + n2)( m2 - n2)

Now again, we can express m2 – n2 as using a2 – b2 = (a + b)(a - b).

= (m2 + n2) (m + n) (m - n)







8th Grade Math Practice

From Factorization by Using Identities to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Area, Perimeter and Volume | Square, Rectangle, Cube,Cubo

    Jul 25, 25 12:21 PM

    In this worksheet on area perimeter and volume you will get different types of questions on find the perimeter of a rectangle, find the perimeter of a square, find the area of a rectangle, find the ar…

    Read More

  2. Worksheet on Volume of a Cube and Cuboid |The Volume of a RectangleBox

    Jul 25, 25 03:15 AM

    Volume of a Cube and Cuboid
    We will practice the questions given in the worksheet on volume of a cube and cuboid. We know the volume of an object is the amount of space occupied by the object.1. Fill in the blanks:

    Read More

  3. Volume of a Cuboid | Volume of Cuboid Formula | How to Find the Volume

    Jul 24, 25 03:46 PM

    Volume of Cuboid
    Cuboid is a solid box whose every surface is a rectangle of same area or different areas. A cuboid will have a length, breadth and height. Hence we can conclude that volume is 3 dimensional. To measur…

    Read More

  4. Volume of a Cube | How to Calculate the Volume of a Cube? | Examples

    Jul 23, 25 11:37 AM

    Volume of a Cube
    A cube is a solid box whose every surface is a square of same area. Take an empty box with open top in the shape of a cube whose each edge is 2 cm. Now fit cubes of edges 1 cm in it. From the figure i…

    Read More

  5. 5th Grade Volume | Units of Volume | Measurement of Volume|Cubic Units

    Jul 20, 25 10:22 AM

    Cubes in Cuboid
    Volume is the amount of space enclosed by an object or shape, how much 3-dimensional space (length, height, and width) it occupies. A flat shape like triangle, square and rectangle occupies surface on…

    Read More