We will discuss how to express decimal as fraction.
Let us consider some of the following examples on expressing a decimal as a fraction.
1. Convert 2.12 into a fraction.
Solution:
2.12 = 2 + 1 tenth + 2 hundredths = 2 + \(\frac{1}{10}\) + \(\frac{2}{100}\) = 2 + \(\frac{1 × 10}{10 × 10}\) + \(\frac{2}{100}\) = 2 + \(\frac{10}{100}\) + \(\frac{2}{100}\) = 2 + \(\frac{10 + 2}{100}\) = 2 + \(\frac{12}{100}\) = 2 + \(\frac{3}{25}\) = 2\(\frac{3}{25}\) 
We write the place value of digits of decimal and then add as usual. 
2. Convert 5.125 into a fraction.
Solution:
5.125 = 5 + 1 tenth + 2 hundredths + 5 thousandths = 5 + \(\frac{1}{10}\) + \(\frac{2}{100}\) + \(\frac{5}{1000}\) = 5 + \(\frac{1 × 100}{10 × 100}\) + \(\frac{2 × 10}{100 × 10}\) + \(\frac{5}{1000}\) = 5 + \(\frac{1 × 100}{10 × 100}\) + \(\frac{2 × 10}{100 × 10}\) + \(\frac{5}{1000}\) = 5 + \(\frac{100}{1000}\) + \(\frac{20}{1000}\) + \(\frac{5}{1000}\) = 5 + \(\frac{100 + 20 + 5}{1000}\) = 5 + \(\frac{125}{1000}\) = 5 + \(\frac{1}{8}\) = 5\(\frac{1}{8}\) 
We write the place value of digits of decimal and then add as usual. 
Note: We always reduce the fraction converted from a decimal to its lowest form.
`From Decimal as Fraction to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.