# Worksheet on Elimination of Unknown Angle(s) Using Trigonometric Identities

In Worksheet on elimination of unknown angle(s) using Trigonometric identities we will prove various types of practice questions on Trigonometric identities.

Here you will get 11 different types of elimination of unknown angle using Trigonometric identities questions with some selected questions hints.

1. Eliminate θ (theta) in each of the following:

(i) x = a sec θ, y = b tan θ

(ii) a sin θ = p, b tan θ = q

(iii) sin θ + cos θ = m, tan θ + cot θ = n

(iv) sin θ – cos θ = m, sec θ - csc θ = b

2. If sin θ + cos θ = m and sec θ + csc θ = n, then prove that

n(m2 – 1) = 2m.

Hint: n = sec θ + csc θ

⟹ n = $$\frac{1}{cos θ}$$ + $$\frac{1}{sin θ}$$

⟹ n = $$\frac{sin θ + cos θ}{sin θ cos θ}$$

⟹ n = $$\frac{m}{sin θ cos θ}$$

⟹ sin θ cos θ = $$\frac{m}{n}$$ ......... (i)

Now, m2 – 1 = (sin θ + cos θ)2 - 1

= (sin2 θ + sin2 θ + 2 sin θ cos θ) - 1

= 1 + 2 sin θ cos θ - 1

= 2 sin θ cos θ

= 2$$\frac{m}{n}$$, From (i)

3. If l1 cos θ + m1 sin θ + n1 = 0 and l2 cos θ + m2 sin θ + n2 = 0 then prove that

(m1n2 – n1m2)2 + (n1l2 – n2l1)2 = (l1m2 – l2m1)2

4. If a sin2 ϕ + b cos2 ϕ = c and p sin2 ϕ + q cos2 ϕ = r then prove that

(b – c)(r – p) = (c – a)(q – r).

Hint: $$\frac{b - c}{c - a}$$ = $$\frac{b - (a sin^{2} ϕ + b cos^{2} ϕ)}{(a sin^{2} ϕ + b cos^{2} ϕ) - a}$$

= $$\frac{(b - a) sin^{2} ϕ}{(b - a) cos^{2} ϕ}$$

= tan2 ϕ.

Similarly, $$\frac{q - r}{r - p}$$ = $$\frac{q - (p sin^{2} ϕ + q cos^{2} ϕ)}{(p sin^{2} ϕ + q cos^{2} ϕ) - p}$$

= $$\frac{(q - p) sin^{2} ϕ}{(q - p) cos^{2} ϕ}$$

= tan2 ϕ.

Therefore, $$\frac{b - c}{c - a}$$ = $$\frac{q - r}{r - p}$$.

5. If a sec θ + b tan θ + c = 0 and a’ sec θ + b’ tan θ + c’ = 0 then prove that

(bc’ – b’c)2 – (ca’ – ac’)2 = (ab’ – a’b)2.

6. If $$\frac{x}{a cos θ}$$ = $$\frac{y}{b sin θ}$$ and $$\frac{ax}{cos θ}$$ - $$\frac{by}{sin θ}$$ = a2 – b2, prove that

$$\frac{x^{2}}{a^{2}}$$ + $$\frac{y^{2}}{b^{2}}$$ = 1.

Hint: $$\frac{x}{cos θ}$$ ∙ b - $$\frac{y}{sin θ}$$ ∙ a + 0 = 0 and $$\frac{x}{cos θ}$$ ∙ a - $$\frac{y}{sin θ}$$ ∙ b - (a2 - b2) = 0.

By cross multiplication, $$\frac{\frac{x}{cos θ}}{a(a^{2} - b^{2})}$$ = $$\frac{\frac{y}{sin θ}}{b(a^{2} - b^{2})}$$ = $$\frac{1}{(a^{2} - b^{2})}$$

⟹ $$\frac{x}{a}$$ = cos θ,  $$\frac{y}{b}$$ = sin θ. Square these and add.

7. If tan A + sin A = m and tan A - sin A = n then prove that

m2 – n2 = 4 $$\sqrt{mn}$$.

8. If x sin3 A + y cos3 A = sin A ∙ cos A and x sin A – y cos A = 0 then prove that

x2 + y2 = 1.

Hint: x sin A - y cos A = 0

⟹ tan A = $$\frac{y}{x}$$

Again, x ∙ $$\frac{sin^{2} A}{cos A}$$ + y ∙ $$\frac{cos^{2} A}{sin A}$$ = 1

⟹ x ∙ $$\frac{y}{x}$$ sin A + y ∙ $$\frac{x}{y}$$ cos A = 1

⟹ x cos A + y sin A = 1

Now, (x sin A - y cos A)2 + (x cos A + y sin A)2 = 02 + 12

9. If csc β – sin β = m3; sec β – cos β = n3 then prove that,

m2n2(m2 + n2) = 1.

10. If a = r cos θ cos β, b = r cos θ sin β and c = r sin θ then prove that,

a2 + b2 + c2 = r2.

11. If p = a sec A cos B, q = b sec A sin B and r = c tan A then prove that,

$$\frac{p^{2}}{a^{2}}$$ + $$\frac{q^{2}}{b^{2}}$$ - $$\frac{r^{2}}{c^{2}}$$ = 1.

1. (i) $$\frac{x^{2}}{a^{2}}$$ - $$\frac{y^{2}}{b^{2}}$$ = 1.

(ii) $$\frac{a^{2}}{p^{2}}$$ - $$\frac{b^{2}}{q^{2}}$$ = 1.

(iii) n(m2 – 1) = 2

(iv) b(1 – a2) = 2a

From Worksheet on Elimination of Unknown Angle(s) Using Trigonometric Identities to HOME PAGE

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

## Recent Articles 1. ### Rupees and Paise | Paise Coins | Rupee Coins | Rupee Notes

Dec 04, 23 02:14 PM

Money consists of rupees and paise; we require money to purchase things. 100 paise make one rupee. List of paise and rupees in the shape of coins and notes:

2. ### Months of the Year | List of 12 Months of the Year |Jan, Feb, Mar, Apr

Dec 04, 23 01:50 PM

There are 12 months in a year. The months are January, February, march, April, May, June, July, August, September, October, November and December. The year begins with the January month. December is t…