Subscribe to our YouTube channel for the latest videos, updates, and tips.


Trigonometric Identities

XYZ is a right-angled triangle in which ∠XZY = 90° and ∠XYZ = θ, which in an acute angle.

10th Grade Trigonometric Identities

We know,

sin θ = \(\frac{\textrm{Opposite}}{\textrm{Hypotenuse}}\) = \(\frac{o}{h}\);

cos θ = \(\frac{\textrm{Adjacent}}{\textrm{Hypotenuse}}\) = \(\frac{a}{h}\);

tan θ = \(\frac{\textrm{Opposite}}{\textrm{Adjacent}}\) = \(\frac{o}{a}\);

csc θ = \(\frac{\textrm{Hypotenuse}}{\textrm{Opposite}}\) = \(\frac{h}{o}\);

sec θ = \(\frac{\textrm{Hypotenuse}}{\textrm{Adjacent}}\) = \(\frac{h}{a}\);

cot θ = \(\frac{\textrm{Adjacent}}{\textrm{Opposite}}\) = \(\frac{a}{o}\).

Let’s multiply sin θ and csc θ

sin θ ∙ csc θ = \(\frac{o}{h}\) × \(\frac{h}{o}\) = 1

Therefore, csc θ = \(\frac{1}{sin θ}\)

Now, multiply cos θ and sec θ

cos θ ∙ sec θ = \(\frac{a}{h}\) × \(\frac{h}{a}\) = 1

Therefore, sec θ = \(\frac{1}{cos θ}\)

Again, multiply tan θ and cot θ

tan θ ∙ cot θ = \(\frac{o}{a}\) × \(\frac{a}{a}\) = 1

Therefore, cot θ = \(\frac{1}{tan θ}\)

Let’s divide sin θ by cos θ

sin θ ÷ cos θ = \(\frac{sin θ}{cos θ}\) = \(\frac{\frac{o}{h}}{\frac{a}{h}}\) = \(\frac{o}{a}\) = tan θ.

Therefore, tan θ = \(\frac{sin θ}{cos θ}\).

Similarly, divide cos θ by sin θ

cos θ ÷ sin θ = \(\frac{cos θ}{sin θ}\) = \(\frac{\frac{a}{h}}{\frac{o}{h}}\) = \(\frac{a}{o}\) = cot θ.

Therefore, cot θ = \(\frac{cos θ}{sin θ}\).

 

If a relation of equality between two expressions involving trigonometric ratios of an angle θ holds true for all values of θ then the equality is called a trigonometric identity. But it holds true only for some values of θ, the equality gives a trigonometric equation. There are a number of fundamental trigonometric identities.

I.  sin\(^{2}\) θ + cos\(^{2}\) θ = 1

We have, sin θ = \(\frac{o}{h}\) and cos θ = \(\frac{a}{h}\).

Therefore, sin\(^{2}\) θ + cos\(^{2}\) θ = \(\frac{o^{2}}{h^{2}}\) + \(\frac{a^{2}}{h^{2}}\).

                                       = \(\frac{o^{2} + a^{2}}{h^{2}}\)

                                       = \(\frac{h^{2}}{h^{2}}\); [Since, in the right-angled ∆XYZ, o\(^{2}\) + a\(^{2}\) = h\(^{2}\) (by Pythagoras’ Theorem)]

                                        = 1.

Therefore, sin\(^{2}\) θ + cos\(^{2}\) θ = 1.

Consequently, 1 - sin\(^{2}\) θ = cos\(^{2}\) θ and 1 - cos\(^{2}\) θ = sin\(^{2}\) θ.

 

II. sec\(^{2}\) θ - tan\(^{2}\) θ = 1

We have, sec θ = \(\frac{h}{a}\) and tan θ = \(\frac{o}{a}\).

Therefore, sec\(^{2}\) θ - tan\(^{2}\) θ = \(\frac{h^{2}}{a^{2}}\) - \(\frac{o^{2}}{a^{2}}\).

                                      = \(\frac{h^{2} - o^{2}}{a^{2}}\)

                                      = \(\frac{a^{2}}{a^{2}}\); [Since, in the right-angled ∆XYZ, o\(^{2}\) + a\(^{2}\) = h\(^{2}\) ⟹ h\(^{2}\) - o\(^{2}\) = a\(^{2}\) (by Pythagoras’ Theorem)]

                                      = 1.

Therefore, sec\(^{2}\) θ - tan\(^{2}\) θ = 1.

Consequently, 1 + tan\(^{2}\) θ = sec\(^{2}\) θ and sec\(^{2}\) θ - 1 = tan\(^{2}\) θ.

 

 

III. csc\(^{2}\) θ - cot\(^{2}\) θ = 1

We have, csc θ = \(\frac{h}{o}\) and cot θ = \(\frac{a}{o}\).

Therefore, csc\(^{2}\) θ - cot\(^{2}\) θ = \(\frac{h^{2}}{o^{2}}\) - \(\frac{a^{2}}{o^{2}}\).

                                       = \(\frac{h^{2} - a^{2}}{o^{2}}\)

                                       = \(\frac{o^{2}}{o^{2}}\); [Since, in the right-angled ∆XYZ, o\(^{2}\) + a\(^{2}\) = h\(^{2}\) ⟹ h\(^{2}\) - a\(^{2}\) = o\(^{2}\) (by Pythagoras’ Theorem)]

                                       = 1.

Therefore, csc\(^{2}\) θ - cot\(^{2}\) θ = 1.

Consequently, 1 + cot\(^{2}\) θ = csc\(^{2}\) θ and csc\(^{2}\) θ - 1 = cot\(^{2}\) θ.

These three trigonometric identities are also called Pythagorean identities.

Pythagorean Identities

Note: The equalities csc θ = \(\frac{1}{sin θ}\), sec θ = \(\frac{1}{cos θ}\), cot θ = \(\frac{1}{tan θ}\), tan θ = \(\frac{sin θ}{cos θ}\) and cot θ = \(\frac{cos θ}{sin θ}\) are holds for all values of θ. Therefore, these equalities are trigonometric identities.

Thus, we have the following trigonometric identities.


Table of Trigonometric Identities

1. csc θ = \(\frac{1}{sin θ}\),

2. sec θ = \(\frac{1}{cos θ}\),

3. cot θ = \(\frac{1}{tan θ}\),

4. tan θ = \(\frac{sin θ}{cos θ}\),

5. cot θ = \(\frac{cos θ}{sin θ}\)

6. sin\(^{2}\) θ + cos\(^{2}\) θ = 1; 1 - sin\(^{2}\) θ = cos\(^{2}\) θ, 1 - cos\(^{2}\) θ = sin\(^{2}\) θ.

7. sec\(^{2}\) θ - tan\(^{2}\) θ = 1; 1 + tan\(^{2}\) θ = sec\(^{2}\) θ; sec\(^{2}\) θ - 1 = tan\(^{2}\) θ.

8. csc\(^{2}\) θ - cot\(^{2}\) θ = 1

9. 1 + cot\(^{2}\) θ = csc\(^{2}\) θ,

10. csc\(^{2}\) θ - 1 = cot\(^{2}\) θ.

Table of Trigonometric Identities

Solved Examples on Trigonometric Identities:

1. Prove that sin\(^{4}\) θ + cos\(^{4}\)  θ + 2 sin\(^{2}\) θ ∙ cos\(^{2}\)  θ = 1

Solution:

LHS = sin\(^{4}\) θ + cos\(^{4}\)  θ + 2 sin\(^{2}\) θ ∙ cos\(^{2}\)  θ

       = (sin\(^{2}\) θ)\(^{2}\) + (cos\(^{2}\)  θ)\(^{2}\) + 2 sin\(^{2}\) θ ∙ cos\(^{2}\)  θ

       = (sin\(^{2}\) θ + cos\(^{2}\) θ)\(^{2}\)

       = 1\(^{2}\); [Since, sin\(^{2}\) θ + cos\(^{2}\) θ = 1]

       = 1 = RHS. (Proved).


How to Solve Trigonometric Identities Proving Problems?

2. Show that sec θ - cos θ = sin θ tan θ

Solution:

LHS =  sec θ - cos θ

      = \(\frac{1}{cos θ}\) - cos θ

      = \(\frac{1 - cos^{2} θ}{cos θ}\)

      = \(\frac{sin^{2} θ}{cos θ}\);  [Since, sin\(^{2}\) θ + cos\(^{2}\) θ = 1]

      = sin θ ∙ \(\frac{sin θ}{cos θ}\)

      = sin θ ∙ tan θ = RHS. (Proved)


3. Prove that 1 - \(\frac{cos^{2} A}{1 + sin A}\) = sin A

Solution:

LHS = 1 - \(\frac{cos^{2} A}{1 + sin A}\)

       = 1 - \(\frac{1 - sin^{2} A}{1 + sin A}\); [cos\(^{2}\) θ = 1 - sin\(^{2}\) θ]

       = 1 - \(\frac{(1 + sin A)(1 – sin A)}{1 + sin A}\)

       = 1 – (1 – sin A)

       = 1 – 1 + sin A

       = sin A = RHS. (Proved).


Verifying Trigonometric Identities & Equations

4. Prove that \(\frac{sin A}{1 + cos A}\) + \(\frac{sin A}{1 - cos A}\) = 2 csc A.

Solution:

LHS = \(\frac{sin A}{1 + cos A}\) + \(\frac{sin A}{1 - cos A}\)

       = \(\frac{sin A(1 – cos A) + sin A(1 + cos A)}{(1 + cos A)(1 – cos A)}\)

       = \(\frac{sin A – sin A ∙ cos A + sin A + sin A ∙ cos A)}{1 - cos^{2} A}\)

       = \(\frac{2 sin A}{sin^{2} A}\); [Since, 1 - cos\(^{2}\) A = sin\(^{2}\) A]

       = \(\frac{2}{sin A}\)

       = 2 ∙ \(\frac{1}{sin A}\); [Since, csc A = \(\frac{1}{sin A}\)]

       = RHS. (Proved).


Proving Trigonometric Identities Practice Problems Online

5. Prove that \(\frac{sin A}{1 + cos A}\) = \(\frac{1 – cos A}{sin A}\).

Solution:

LHS = \(\frac{sin A}{1 + cos A}\)

       = \(\frac{sin A}{1 + cos A}\) ∙ \(\frac{1 - cos A}{1 - cos A}\)

       = \(\frac{sin A(1 - cos A)}{1 - cos^{2} A}\)

       = \(\frac{sin A(1 - cos A)}{sin^{2} A}\); [Since 1 - cos\(^{2}\) θ = sin\(^{2}\) θ]

       = \(\frac{1 - cos A}{sin A}\) = RHS. (Proved).


Trigonometry Problems and Questions with Solutions

6. Prove that \(\sqrt{\frac{1 + sin θ}{1 - sin θ}}\) = sec θ +tan θ.

Solution:

LHS = \(\sqrt{\frac{1 + sin θ}{1 - sin θ}}\)

       = \(\sqrt{\frac{(1 + sin θ) (1 + sin θ)}{(1 - sin θ)(1 + sin θ)}}\)

       = \(\sqrt{\frac{(1 + sin θ)^{2}}{1 – sin^{2} θ}}\)

       = \(\sqrt{\frac{(1 + sin θ)^{2}}{cos^{2} θ}}\); [Since 1 - sin\(^{2}\) θ = cos\(^{2}\) θ]

       = \(\frac{1 + sin θ}{cos θ}\)

       = \(\frac{1}{cos θ}\) + \(\frac{sin θ}{cos θ}\)

       = secθ + tan θ = RHS. (Proved).


Trigonometric identities problems for class 10

7. Prove that tan\(^{2}\) A – tan\(^{2}\) B = \(\frac{sin^{2} A - sin^{2} B}{cos^{2} A ∙ cos^{2} B}\) = sec\(^{2}\) A - sec\(^{2}\) B

Solution:

LHS = tan\(^{2}\) A – tan\(^{2}\) B

       = \(\frac{sin^{2} A}{cos^{2} A}\) - \(\frac{ sin^{2} B}{cos^{2} B}\)

       = \(\frac{sin^{2} A ∙ cos^{2} B - sin^{2} B ∙ cos^{2} A}{cos^{2} A ∙ cos^{2} B}\)

       = \(\frac{sin^{2} A (1 - sin^{2} B) - sin^{2} B(1 - sin^{2} A)}{cos^{2} A ∙ cos^{2} B}\); [Since, cos2 B = 1 - sin2 B and cos2 A = 1 - sin2 A]

       = \(\frac{sin^{2} A  - sin^{2} A  sin^{2} B - sin^{2} B + sin^{2} B sin^{2} A}{cos^{2} A ∙ cos^{2} B}\);

        = \(\frac{sin^{2} A - sin^{2} B}{cos^{2} A ∙ cos^{2} B}\) = MHS

        = \(\frac{(1 - cos^{2} A) - (1 - cos^{2} B)}{cos^{2} A ∙ cos^{2} B}\); [Since, sin2 A = 1 - cos2 A and sin2 B = 1 - cos2 B]

        = \(\frac{cos^{2} B - cos^{2} A}{cos^{2} A ∙ cos^{2} B}\)

        = \(\frac{cos^{2} B}{cos^{2} A ∙ cos^{2} B}\) - \(\frac{cos^{2} A}{cos^{2} A ∙ cos^{2} B}\)

        = \(\frac{1}{cos^{2} A}\) - \(\frac{1}{cos^{2} B}\)

        = sec\(^{2}\) A – sec\(^{2}\) B = RHS. (Proved)

Again, 

LHS = tan\(^{2}\) A – tan\(^{2}\) B

       = (sec\(^{2}\) A – 1) – (sec\(^{2}\) B – 1); [Since, tan\(^{2}\) θ = sec\(^{2}\) θ – 1 ]

       = sec\(^{2}\) A – 1 – (sec\(^{2}\) B +1

       = sec\(^{2}\) A – sec\(^{2}\) B = RHS. (Proved).


Solving Trigonometric Equations using Trigonometric Identities

8. Prove that tan\(^{2}\) θ - sin\(^{2}\) θ = tan\(^{2}\) θ ∙ sin\(^{2}\) θ

Solution:

LHS = tan\(^{2}\) θ - sin\(^{2}\) θ

       = tan\(^{2}\) θ - \(\frac{sin^{2} θ}{cos^{2} θ}\) ∙ cos\(^{2}\)

       = tan\(^{2}\) θ - tan\(^{2}\) θ ∙ cos\(^{2}\)

       = tan\(^{2}\) θ(1 - cos\(^{2}\))

       = tan\(^{2}\) θ ∙ sin\(^{2}\) θ = RHS. (Proved).


List of trigonometric identities Problems

9. Prove that 1 + \(\frac{cot^{2} θ}{1 + csc θ}\) = csc θ

Solution:

LHS = 1 + \(\frac{cot^{2} θ}{1 + csc θ}\)

       = 1 + \(\frac{csc^{2} θ - 1}{1 + csc θ}\)

       = 1 + \(\frac{(csc θ + 1)(csc θ – 1)}{1 + csc θ}\)

       = 1 + (csc θ – 1)

       = 1 + csc θ – 1

       = csc θ = RHS. (Proved).


Solve the problem using trigonometric identities

10. Prove that \(\frac{sec θ - )}{sec θ + 1}\) = (cot θ – csc θ)\(^{2}\).

Solution:

LHS = \(\frac{sec θ - 1}{sec θ + 1}\)

       = \(\frac{sec θ - 1}{sec θ + 1}\) ∙ \(\frac{sec θ - 1}{sec θ - 1}\)

       = \(\frac{(sec θ - 1)^{2}}{sec^{2} θ - 1}\)

       = \(\frac{(sec θ - 1)^{2}}{tan^{2} θ}\); [Since sec\(^{2}\) θ – 1 = tan\(^{2}\) θ]

       = \((\frac{sec θ - 1}{tan θ})^{2}\)

       = \((\frac{\frac{1}{cos θ} - 1}{\frac{sin θ }{cos θ} })^{2}\)

       = \((\frac{1 – cos θ}{cos θ} ∙ \frac{cos θ}{sin θ})^{2}\)

       = \((\frac{1 – cos θ}{sin θ})^{2}\)

       = \((\frac{1}{sin θ} - \frac{cos θ}{sin θ})^{2}\)

       = (csc θ – cot θ)\(^{2}\)

       = (cot θ – csc θ)\(^{2}\) = RHS. (Proved).


Proving Trigonometric Identities

11. Prove that \(\frac{sin A}{cot A + csc A}\) = 2 + \(\frac{sin A}{cot A - csc A }\)

Solution:

LHS = \(\frac{sin A}{cot A + csc A}\)

       = \(\frac{sin A(cot A - csc A)}{(cot A + csc A)(cot A - csc A)}\)

       = \(\frac{sin A ∙ cot A – sin A ∙ csc A}{cot^{2} A – csc^{2} A}\)

       = \(\frac{sin A ∙ \frac{cos A}{sin A} – 1}{-1}\); [since, sin θ csc θ = 1, csc\(^{2}\) θ – cot\(^{2}\)  θ = 1]

       = \(\frac{cos A - 1}{-1}\)

       = 1 – cos A

RHS = 2 + \(\frac{sin A}{cot A - csc A}\)

        = 2 + \(\frac{sin A}{ cot A - csc A}\) ∙ \(\frac{(cot A + csc A)}{(cot A + csc A)}\)

        = 2 + \(\frac{sin A(cot A + csc A)}{cot^{2} A – csc^{2} A}\)

        = 2 + \(\frac{sin A(\frac{cos A}{sin A} + \frac{1}{sin A})}{-1}\)

        = 2 + \(\frac{cos A + 1}{-1}\)

        = 2 – (cos A + 1)

        = 2 – cos A – 1

        = 1 – cos A

Therefore, LHS = RHS. (Proved).


Alternative Method

The identity is established if we can prove that

\(\frac{sin A}{cot A + csc A}\) - \(\frac{sin A}{cot A - csc A }\) = 2

Now, here  

LHS = \(\frac{sin A}{cot A + csc A}\) - \(\frac{sin A}{cot A - csc A }\)

       = \(\frac{sin A(cot A - csc A) – sin A(cot A + csc A)}{( cot A + csc A)(cot A - csc A)}\)

       = \(\frac{sin A ∙ cot A – sin A ∙ csc A – sin A ∙ cot A – sin A ∙ csc A}{(cot A + csc A)(cot A - csc A)}\)

       = \(\frac{–2 sin A ∙ csc A}{cot^{2} A – csc^{2} A}\)

       = \(\frac{–2}{-1 }\); [Since sin θ csc θ = 1, csc\(^{2}\) θ – cot\(^{2}\)  θ = 1]

       = 2 = RHS. (Proved)


Problems on Evaluation using Trigonometric Identities:

12. If sin θ + csc θ = 2, find the value of sin\(^{10}\) θ + csc\(^{11}\) θ

Solution:

Given that, sin θ + csc θ = 2 ……………. (i)

⟹ sin θ + \(\frac{1}{ sin θ}\) = 2

⟹ \(\frac{ sin^{2} θ + 1}{sin θ }\) = 2

⟹ sin\(^{2}\) θ + 1= 2 sin θ

⟹ sin\(^{2}\) θ - 2 sin θ + 1 = 0

⟹ (sin θ - 1)\(^{2}\) = 0

⟹ sin θ - 1 = 0

⟹ sin θ = 1

⟹ csc θ = \(\frac{1}{ sin θ}\) = \(\frac{1}{ 1}\) = 1

Therefore, csc θ = 1.

Now, sin\(^{10}\) θ + csc\(^{11}\) θ

= 1\(^{10}\) + 1\(^{11}\)

= 1 + 1

= 2.

 

13. If sec θ – tan θ = \(\frac{1}{3}\), find the value of sec A and tan A.

Solution:

Given, sec θ – tan θ = \(\frac{1}{3}\) ………… (i)

We know that the Pythagorean identity, sec\(^{2}\) θ - tan\(^{2}\) θ = 1.

                   ⟹ (sec θ + tan θ)(sec θ - tan θ) = 1

                   ⟹ (sec θ + tan θ) ∙ \(\frac{1}{3}\) = 1, [Given sec θ – tan θ = \(\frac{1}{3}\)]

                   ⟹ sec θ + tan θ = 3 ……….. (ii)

Now adding (i) and (ii) we get

                       2 sec θ = \(\frac{1}{3}\) + 3

                   ⟹ 2 sec θ = \(\frac{10}{3}\)

                   ⟹ sec θ = \(\frac{10}{3}\) ∙ \(\frac{1}{2}\)

                   ⟹ sec θ = \(\frac{5}{3}\)

Therefore, sec θ = \(\frac{5}{3}\)

Putting the value of sec θ = \(\frac{5}{3}\) in (ii), we get

\(\frac{5}{3}\) + tan θ = 3

⟹ tan θ = 3 - \(\frac{5}{3}\)

⟹ tan θ = \(\frac{4}{3}\)

Therefore, tan θ = \(\frac{4}{3}\).


14. If tan A + sec A = \(\frac{2}{\sqrt{3}}\), find the value of sin A

Solution:

Given that, tan A + sec A = \(\frac{2}{\sqrt{3}}\) ……………….. (i)

We know the Pythagorean trigonometric identity,

       sec\(^{2}\) A - tan\(^{2}\) A = 1.

⟹ (sec A + tan A)(sec A – tan A) = 1

⟹ \(\frac{2}{\sqrt{3}}\)(sec A – tan A) = 1; [given , tan A + sec A = \(\frac{2}{\sqrt{3}}\)]

⟹ sec A – tan A = \(\frac{\sqrt{3}}{2}\) ……………….. (ii)


Solving these two equations we get,

     2 sec A = \(\frac{2}{\sqrt{3}}\) + \(\frac{\sqrt{3}}{2}\)

 ⟹ 2 sec A = \(\frac{4 + 3}{2\sqrt{3}}\)

 ⟹ 2 sec A = \(\frac{7}{2\sqrt{3}}\)

⟹ sec A = \(\frac{7}{4\sqrt{3}}\) ……………….. (iii)


Putting the value of sec A = \(\frac{7}{4\sqrt{3}}\) in (i) we get,

     tan A + \(\frac{7}{4\sqrt{3}}\) = \(\frac{2}{\sqrt{3}}\)

⟹ tan A = \(\frac{2}{\sqrt{3}}\) - \(\frac{7}{4\sqrt{3}}\)

⟹ tan A = \(\frac{8 - 7}{4\sqrt{3}}\)

⟹ tan A = \(\frac{1}{4\sqrt{3}}\)……………….. (iv)


Now dividing (iv) by (iii) we get,

\(\frac{tan A}{sec A}\) = \(\frac{1}{7}\)

⟹ sin A = \(\frac{1}{7}\)

Therefore, sin A = \(\frac{1}{7}\).


Problems on establishing conditional results

15. If cos A + sin A = \(\sqrt{2}\) cos A, prove that cos A - sin A = \(\sqrt{2}\) sin A.

Solution:

Let cos A - sin A = k. Now,

(cos A + sin A)\(^{2}\) + (cos A - sin A)\(^{2}\) = cos\(^{2}\) A + sin\(^{2}\) A + 2 cos A ∙ sin A + cos\(^{2}\) A + sin\(^{2}\) A - 2 cos A ∙ sin A

                                            = 1 + 2 cos A sin A + 1 - 2 cos A sin A

                                            = 2

Therefore, (\(\sqrt{2}\) cos A)\(^{2}\) + k\(^{2}\) = 2

⟹ k\(^{2}\) = 2 - (\(\sqrt{2}\) cos A)\(^{2}\) 

⟹ k\(^{2}\) = 2 - 2cos\(^{2}\) A

⟹ k\(^{2}\) = 2(1 - cos\(^{2}\) A)

⟹ k\(^{2}\) = 2sin\(^{2}\) A; [Since, sin\(^{2}\) θ + cos\(^{2}\) θ = 1]

⟹ k = \(\sqrt{2}\) sin A

⟹ cos A - sin A = \(\sqrt{2}\) sin A. (Proved).





10th Grade Math

From Trigonometric Identities to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Average Word Problems | Worksheet on Average Questions with Answers

    May 20, 25 05:40 PM

    In average word problems we will solve different types of problems on basic concept of average. 1. Richard scored 80, 53, 19, 77, 29 and 96 runs in 6 innings in a series. Find the average runs scored…

    Read More

  2. Worksheet on Average | Word Problem on Average | Questions on Average

    May 19, 25 02:53 PM

    Worksheet on Average
    In worksheet on average we will solve different types of questions on the concept of average, calculating the average of the given quantities and application of average in different problems.

    Read More

  3. 8 Times Table | Multiplication Table of 8 | Read Eight Times Table

    May 18, 25 04:33 PM

    Printable eight times table
    In 8 times table we will memorize the multiplication table. Printable multiplication table is also available for the homeschoolers. 8 × 0 = 0 8 × 1 = 8 8 × 2 = 16 8 × 3 = 24 8 × 4 = 32 8 × 5 = 40

    Read More

  4. How to Find the Average in Math? | What Does Average Mean? |Definition

    May 17, 25 04:04 PM

    Average 2
    Average means a number which is between the largest and the smallest number. Average can be calculated only for similar quantities and not for dissimilar quantities.

    Read More

  5. Problems Based on Average | Word Problems |Calculating Arithmetic Mean

    May 17, 25 03:47 PM

    Here we will learn to solve the three important types of word problems based on average. The questions are mainly based on average or mean, weighted average and average speed.

    Read More