Trigonometric Identities

XYZ is a right-angled triangle in which ∠XZY = 90° and ∠XYZ = θ, which in an acute angle.

10th Grade Trigonometric Identities

We know,

sin θ = \(\frac{\textrm{Opposite}}{\textrm{Hypotenuse}}\) = \(\frac{o}{h}\);

cos θ = \(\frac{\textrm{Adjacent}}{\textrm{Hypotenuse}}\) = \(\frac{a}{h}\);

tan θ = \(\frac{\textrm{Opposite}}{\textrm{Adjacent}}\) = \(\frac{o}{a}\);

csc θ = \(\frac{\textrm{Hypotenuse}}{\textrm{Opposite}}\) = \(\frac{h}{o}\);

sec θ = \(\frac{\textrm{Hypotenuse}}{\textrm{Adjacent}}\) = \(\frac{h}{a}\);

cot θ = \(\frac{\textrm{Adjacent}}{\textrm{Opposite}}\) = \(\frac{a}{o}\).

Let’s multiply sin θ and csc θ

sin θ ∙ csc θ = \(\frac{o}{h}\) × \(\frac{h}{o}\) = 1

Therefore, csc θ = \(\frac{1}{sin θ}\)

Now, multiply cos θ and sec θ

cos θ ∙ sec θ = \(\frac{a}{h}\) × \(\frac{h}{a}\) = 1

Therefore, sec θ = \(\frac{1}{cos θ}\)

Again, multiply tan θ and cot θ

tan θ ∙ cot θ = \(\frac{o}{a}\) × \(\frac{a}{a}\) = 1

Therefore, cot θ = \(\frac{1}{tan θ}\)

Let’s divide sin θ by cos θ

sin θ ÷ cos θ = \(\frac{sin θ}{cos θ}\) = \(\frac{\frac{o}{h}}{\frac{a}{h}}\) = \(\frac{o}{a}\) = tan θ.

Therefore, tan θ = \(\frac{sin θ}{cos θ}\).

Similarly, divide cos θ by sin θ

cos θ ÷ sin θ = \(\frac{cos θ}{sin θ}\) = \(\frac{\frac{a}{h}}{\frac{o}{h}}\) = \(\frac{a}{o}\) = cot θ.

Therefore, cot θ = \(\frac{cos θ}{sin θ}\).

 

If a relation of equality between two expressions involving trigonometric ratios of an angle θ holds true for all values of θ then the equality is called a trigonometric identity. But it holds true only for some values of θ, the equality gives a trigonometric equation. There are a number of fundamental trigonometric identities.

I.  sin\(^{2}\) θ + cos\(^{2}\) θ = 1

We have, sin θ = \(\frac{o}{h}\) and cos θ = \(\frac{a}{h}\).

Therefore, sin\(^{2}\) θ + cos\(^{2}\) θ = \(\frac{o^{2}}{h^{2}}\) + \(\frac{a^{2}}{h^{2}}\).

                                       = \(\frac{o^{2} + a^{2}}{h^{2}}\)

                                       = \(\frac{h^{2}}{h^{2}}\); [Since, in the right-angled ∆XYZ, o\(^{2}\) + a\(^{2}\) = h\(^{2}\) (by Pythagoras’ Theorem)]

                                        = 1.

Therefore, sin\(^{2}\) θ + cos\(^{2}\) θ = 1.

Consequently, 1 - sin\(^{2}\) θ = cos\(^{2}\) θ and 1 - cos\(^{2}\) θ = sin\(^{2}\) θ.

 

II. sec\(^{2}\) θ - tan\(^{2}\) θ = 1

We have, sec θ = \(\frac{h}{a}\) and tan θ = \(\frac{o}{a}\).

Therefore, sec\(^{2}\) θ - tan\(^{2}\) θ = \(\frac{h^{2}}{a^{2}}\) - \(\frac{o^{2}}{a^{2}}\).

                                      = \(\frac{h^{2} - o^{2}}{a^{2}}\)

                                      = \(\frac{a^{2}}{a^{2}}\); [Since, in the right-angled ∆XYZ, o\(^{2}\) + a\(^{2}\) = h\(^{2}\) ⟹ h\(^{2}\) - o\(^{2}\) = a\(^{2}\) (by Pythagoras’ Theorem)]

                                      = 1.

Therefore, sec\(^{2}\) θ - tan\(^{2}\) θ = 1.

Consequently, 1 + tan\(^{2}\) θ = sec\(^{2}\) θ and sec\(^{2}\) θ - 1 = tan\(^{2}\) θ.

 

 

III. csc\(^{2}\) θ - cot\(^{2}\) θ = 1

We have, csc θ = \(\frac{h}{o}\) and cot θ = \(\frac{a}{o}\).

Therefore, csc\(^{2}\) θ - cot\(^{2}\) θ = \(\frac{h^{2}}{o^{2}}\) - \(\frac{a^{2}}{o^{2}}\).

                                       = \(\frac{h^{2} - a^{2}}{o^{2}}\)

                                       = \(\frac{o^{2}}{o^{2}}\); [Since, in the right-angled ∆XYZ, o\(^{2}\) + a\(^{2}\) = h\(^{2}\) ⟹ h\(^{2}\) - a\(^{2}\) = o\(^{2}\) (by Pythagoras’ Theorem)]

                                       = 1.

Therefore, csc\(^{2}\) θ - cot\(^{2}\) θ = 1.

Consequently, 1 + cot\(^{2}\) θ = csc\(^{2}\) θ and csc\(^{2}\) θ - 1 = cot\(^{2}\) θ.

These three trigonometric identities are also called Pythagorean identities.

Pythagorean Identities

Note: The equalities csc θ = \(\frac{1}{sin θ}\), sec θ = \(\frac{1}{cos θ}\), cot θ = \(\frac{1}{tan θ}\), tan θ = \(\frac{sin θ}{cos θ}\) and cot θ = \(\frac{cos θ}{sin θ}\) are holds for all values of θ. Therefore, these equalities are trigonometric identities.

Thus, we have the following trigonometric identities.


Table of Trigonometric Identities

1. csc θ = \(\frac{1}{sin θ}\),

2. sec θ = \(\frac{1}{cos θ}\),

3. cot θ = \(\frac{1}{tan θ}\),

4. tan θ = \(\frac{sin θ}{cos θ}\),

5. cot θ = \(\frac{cos θ}{sin θ}\)

6. sin\(^{2}\) θ + cos\(^{2}\) θ = 1; 1 - sin\(^{2}\) θ = cos\(^{2}\) θ, 1 - cos\(^{2}\) θ = sin\(^{2}\) θ.

7. sec\(^{2}\) θ - tan\(^{2}\) θ = 1; 1 + tan\(^{2}\) θ = sec\(^{2}\) θ; sec\(^{2}\) θ - 1 = tan\(^{2}\) θ.

8. csc\(^{2}\) θ - cot\(^{2}\) θ = 1

9. 1 + cot\(^{2}\) θ = csc\(^{2}\) θ,

10. csc\(^{2}\) θ - 1 = cot\(^{2}\) θ.

Table of Trigonometric Identities

Solved Examples on Trigonometric Identities:

1. Prove that sin\(^{4}\) θ + cos\(^{4}\)  θ + 2 sin\(^{2}\) θ ∙ cos\(^{2}\)  θ = 1

Solution:

LHS = sin\(^{4}\) θ + cos\(^{4}\)  θ + 2 sin\(^{2}\) θ ∙ cos\(^{2}\)  θ

       = (sin\(^{2}\) θ)\(^{2}\) + (cos\(^{2}\)  θ)\(^{2}\) + 2 sin\(^{2}\) θ ∙ cos\(^{2}\)  θ

       = (sin\(^{2}\) θ + cos\(^{2}\) θ)\(^{2}\)

       = 1\(^{2}\); [Since, sin\(^{2}\) θ + cos\(^{2}\) θ = 1]

       = 1 = RHS. (Proved).


How to Solve Trigonometric Identities Proving Problems?

2. Show that sec θ - cos θ = sin θ tan θ

Solution:

LHS =  sec θ - cos θ

      = \(\frac{1}{cos θ}\) - cos θ

      = \(\frac{1 - cos^{2} θ}{cos θ}\)

      = \(\frac{sin^{2} θ}{cos θ}\);  [Since, sin\(^{2}\) θ + cos\(^{2}\) θ = 1]

      = sin θ ∙ \(\frac{sin θ}{cos θ}\)

      = sin θ ∙ tan θ = RHS. (Proved)


3. Prove that 1 - \(\frac{cos^{2} A}{1 + sin A}\) = sin A

Solution:

LHS = 1 - \(\frac{cos^{2} A}{1 + sin A}\)

       = 1 - \(\frac{1 - sin^{2} A}{1 + sin A}\); [cos\(^{2}\) θ = 1 - sin\(^{2}\) θ]

       = 1 - \(\frac{(1 + sin A)(1 – sin A)}{1 + sin A}\)

       = 1 – (1 – sin A)

       = 1 – 1 + sin A

       = sin A = RHS. (Proved).


Verifying Trigonometric Identities & Equations

4. Prove that \(\frac{sin A}{1 + cos A}\) + \(\frac{sin A}{1 - cos A}\) = 2 csc A.

Solution:

LHS = \(\frac{sin A}{1 + cos A}\) + \(\frac{sin A}{1 - cos A}\)

       = \(\frac{sin A(1 – cos A) + sin A(1 + cos A)}{(1 + cos A)(1 – cos A)}\)

       = \(\frac{sin A – sin A ∙ cos A + sin A + sin A ∙ cos A)}{1 - cos^{2} A}\)

       = \(\frac{2 sin A}{sin^{2} A}\); [Since, 1 - cos\(^{2}\) A = sin\(^{2}\) A]

       = \(\frac{2}{sin A}\)

       = 2 ∙ \(\frac{1}{sin A}\); [Since, csc A = \(\frac{1}{sin A}\)]

       = RHS. (Proved).


Proving Trigonometric Identities Practice Problems Online

5. Prove that \(\frac{sin A}{1 + cos A}\) = \(\frac{1 – cos A}{sin A}\).

Solution:

LHS = \(\frac{sin A}{1 + cos A}\)

       = \(\frac{sin A}{1 + cos A}\) ∙ \(\frac{1 - cos A}{1 - cos A}\)

       = \(\frac{sin A(1 - cos A)}{1 - cos^{2} A}\)

       = \(\frac{sin A(1 - cos A)}{sin^{2} A}\); [Since 1 - cos\(^{2}\) θ = sin\(^{2}\) θ]

       = \(\frac{1 - cos A}{sin A}\) = RHS. (Proved).


Trigonometry Problems and Questions with Solutions

6. Prove that \(\sqrt{\frac{1 + sin θ}{1 - sin θ}}\) = sec θ +tan θ.

Solution:

LHS = \(\sqrt{\frac{1 + sin θ}{1 - sin θ}}\)

       = \(\sqrt{\frac{(1 + sin θ) (1 + sin θ)}{(1 - sin θ)(1 + sin θ)}}\)

       = \(\sqrt{\frac{(1 + sin θ)^{2}}{1 – sin^{2} θ}}\)

       = \(\sqrt{\frac{(1 + sin θ)^{2}}{cos^{2} θ}}\); [Since 1 - sin\(^{2}\) θ = cos\(^{2}\) θ]

       = \(\frac{1 + sin θ}{cos θ}\)

       = \(\frac{1}{cos θ}\) + \(\frac{sin θ}{cos θ}\)

       = secθ + tan θ = RHS. (Proved).


Trigonometric identities problems for class 10

7. Prove that tan\(^{2}\) A – tan\(^{2}\) B = \(\frac{sin^{2} A - sin^{2} B}{cos^{2} A ∙ cos^{2} B}\) = sec\(^{2}\) A - sec\(^{2}\) B

Solution:

LHS = tan\(^{2}\) A – tan\(^{2}\) B

       = \(\frac{sin^{2} A}{cos^{2} A}\) - \(\frac{ sin^{2} B}{cos^{2} B}\)

       = \(\frac{sin^{2} A ∙ cos^{2} B - sin^{2} B ∙ cos^{2} A}{cos^{2} A ∙ cos^{2} B}\)

       = \(\frac{sin^{2} A (1 - sin^{2} B) - sin^{2} B(1 - sin^{2} A)}{cos^{2} A ∙ cos^{2} B}\); [Since, cos2 B = 1 - sin2 B and cos2 A = 1 - sin2 A]

       = \(\frac{sin^{2} A  - sin^{2} A  sin^{2} B - sin^{2} B + sin^{2} B sin^{2} A}{cos^{2} A ∙ cos^{2} B}\);

        = \(\frac{sin^{2} A - sin^{2} B}{cos^{2} A ∙ cos^{2} B}\) = MHS

        = \(\frac{(1 - cos^{2} A) - (1 - cos^{2} B)}{cos^{2} A ∙ cos^{2} B}\); [Since, sin2 A = 1 - cos2 A and sin2 B = 1 - cos2 B]

        = \(\frac{cos^{2} B - cos^{2} A}{cos^{2} A ∙ cos^{2} B}\)

        = \(\frac{cos^{2} B}{cos^{2} A ∙ cos^{2} B}\) - \(\frac{cos^{2} A}{cos^{2} A ∙ cos^{2} B}\)

        = \(\frac{1}{cos^{2} A}\) - \(\frac{1}{cos^{2} B}\)

        = sec\(^{2}\) A – sec\(^{2}\) B = RHS. (Proved)

Again, 

LHS = tan\(^{2}\) A – tan\(^{2}\) B

       = (sec\(^{2}\) A – 1) – (sec\(^{2}\) B – 1); [Since, tan\(^{2}\) θ = sec\(^{2}\) θ – 1 ]

       = sec\(^{2}\) A – 1 – (sec\(^{2}\) B +1

       = sec\(^{2}\) A – sec\(^{2}\) B = RHS. (Proved).


Solving Trigonometric Equations using Trigonometric Identities

8. Prove that tan\(^{2}\) θ - sin\(^{2}\) θ = tan\(^{2}\) θ ∙ sin\(^{2}\) θ

Solution:

LHS = tan\(^{2}\) θ - sin\(^{2}\) θ

       = tan\(^{2}\) θ - \(\frac{sin^{2} θ}{cos^{2} θ}\) ∙ cos\(^{2}\)

       = tan\(^{2}\) θ - tan\(^{2}\) θ ∙ cos\(^{2}\)

       = tan\(^{2}\) θ(1 - cos\(^{2}\))

       = tan\(^{2}\) θ ∙ sin\(^{2}\) θ = RHS. (Proved).


List of trigonometric identities Problems

9. Prove that 1 + \(\frac{cot^{2} θ}{1 + csc θ}\) = csc θ

Solution:

LHS = 1 + \(\frac{cot^{2} θ}{1 + csc θ}\)

       = 1 + \(\frac{csc^{2} θ - 1}{1 + csc θ}\)

       = 1 + \(\frac{(csc θ + 1)(csc θ – 1)}{1 + csc θ}\)

       = 1 + (csc θ – 1)

       = 1 + csc θ – 1

       = csc θ = RHS. (Proved).


Solve the problem using trigonometric identities

10. Prove that \(\frac{sec θ - )}{sec θ + 1}\) = (cot θ – csc θ)\(^{2}\).

Solution:

LHS = \(\frac{sec θ - 1}{sec θ + 1}\)

       = \(\frac{sec θ - 1}{sec θ + 1}\) ∙ \(\frac{sec θ - 1}{sec θ - 1}\)

       = \(\frac{(sec θ - 1)^{2}}{sec^{2} θ - 1}\)

       = \(\frac{(sec θ - 1)^{2}}{tan^{2} θ}\); [Since sec\(^{2}\) θ – 1 = tan\(^{2}\) θ]

       = \((\frac{sec θ - 1}{tan θ})^{2}\)

       = \((\frac{\frac{1}{cos θ} - 1}{\frac{sin θ }{cos θ} })^{2}\)

       = \((\frac{1 – cos θ}{cos θ} ∙ \frac{cos θ}{sin θ})^{2}\)

       = \((\frac{1 – cos θ}{sin θ})^{2}\)

       = \((\frac{1}{sin θ} - \frac{cos θ}{sin θ})^{2}\)

       = (csc θ – cot θ)\(^{2}\)

       = (cot θ – csc θ)\(^{2}\) = RHS. (Proved).


Proving Trigonometric Identities

11. Prove that \(\frac{sin A}{cot A + csc A}\) = 2 + \(\frac{sin A}{cot A - csc A }\)

Solution:

LHS = \(\frac{sin A}{cot A + csc A}\)

       = \(\frac{sin A(cot A - csc A)}{(cot A + csc A)(cot A - csc A)}\)

       = \(\frac{sin A ∙ cot A – sin A ∙ csc A}{cot^{2} A – csc^{2} A}\)

       = \(\frac{sin A ∙ \frac{cos A}{sin A} – 1}{-1}\); [since, sin θ csc θ = 1, csc\(^{2}\) θ – cot\(^{2}\)  θ = 1]

       = \(\frac{cos A - 1}{-1}\)

       = 1 – cos A

RHS = 2 + \(\frac{sin A}{cot A - csc A}\)

        = 2 + \(\frac{sin A}{ cot A - csc A}\) ∙ \(\frac{(cot A + csc A)}{(cot A + csc A)}\)

        = 2 + \(\frac{sin A(cot A + csc A)}{cot^{2} A – csc^{2} A}\)

        = 2 + \(\frac{sin A(\frac{cos A}{sin A} + \frac{1}{sin A})}{-1}\)

        = 2 + \(\frac{cos A + 1}{-1}\)

        = 2 – (cos A + 1)

        = 2 – cos A – 1

        = 1 – cos A

Therefore, LHS = RHS. (Proved).


Alternative Method

The identity is established if we can prove that

\(\frac{sin A}{cot A + csc A}\) - \(\frac{sin A}{cot A - csc A }\) = 2

Now, here  

LHS = \(\frac{sin A}{cot A + csc A}\) - \(\frac{sin A}{cot A - csc A }\)

       = \(\frac{sin A(cot A - csc A) – sin A(cot A + csc A)}{( cot A + csc A)(cot A - csc A)}\)

       = \(\frac{sin A ∙ cot A – sin A ∙ csc A – sin A ∙ cot A – sin A ∙ csc A}{(cot A + csc A)(cot A - csc A)}\)

       = \(\frac{–2 sin A ∙ csc A}{cot^{2} A – csc^{2} A}\)

       = \(\frac{–2}{-1 }\); [Since sin θ csc θ = 1, csc\(^{2}\) θ – cot\(^{2}\)  θ = 1]

       = 2 = RHS. (Proved)


Problems on Evaluation using Trigonometric Identities:

12. If sin θ + csc θ = 2, find the value of sin\(^{10}\) θ + csc\(^{11}\) θ

Solution:

Given that, sin θ + csc θ = 2 ……………. (i)

⟹ sin θ + \(\frac{1}{ sin θ}\) = 2

⟹ \(\frac{ sin^{2} θ + 1}{sin θ }\) = 2

⟹ sin\(^{2}\) θ + 1= 2 sin θ

⟹ sin\(^{2}\) θ - 2 sin θ + 1 = 0

⟹ (sin θ - 1)\(^{2}\) = 0

⟹ sin θ - 1 = 0

⟹ sin θ = 1

⟹ csc θ = \(\frac{1}{ sin θ}\) = \(\frac{1}{ 1}\) = 1

Therefore, csc θ = 1.

Now, sin\(^{10}\) θ + csc\(^{11}\) θ

= 1\(^{10}\) + 1\(^{11}\)

= 1 + 1

= 2.

 

13. If sec θ – tan θ = \(\frac{1}{3}\), find the value of sec A and tan A.

Solution:

Given, sec θ – tan θ = \(\frac{1}{3}\) ………… (i)

We know that the Pythagorean identity, sec\(^{2}\) θ - tan\(^{2}\) θ = 1.

                   ⟹ (sec θ + tan θ)(sec θ - tan θ) = 1

                   ⟹ (sec θ + tan θ) ∙ \(\frac{1}{3}\) = 1, [Given sec θ – tan θ = \(\frac{1}{3}\)]

                   ⟹ sec θ + tan θ = 3 ……….. (ii)

Now adding (i) and (ii) we get

                       2 sec θ = \(\frac{1}{3}\) + 3

                   ⟹ 2 sec θ = \(\frac{10}{3}\)

                   ⟹ sec θ = \(\frac{10}{3}\) ∙ \(\frac{1}{2}\)

                   ⟹ sec θ = \(\frac{5}{3}\)

Therefore, sec θ = \(\frac{5}{3}\)

Putting the value of sec θ = \(\frac{5}{3}\) in (ii), we get

\(\frac{5}{3}\) + tan θ = 3

⟹ tan θ = 3 - \(\frac{5}{3}\)

⟹ tan θ = \(\frac{4}{3}\)

Therefore, tan θ = \(\frac{4}{3}\).


14. If tan A + sec A = \(\frac{2}{\sqrt{3}}\), find the value of sin A

Solution:

Given that, tan A + sec A = \(\frac{2}{\sqrt{3}}\) ……………….. (i)

We know the Pythagorean trigonometric identity,

       sec\(^{2}\) A - tan\(^{2}\) A = 1.

⟹ (sec A + tan A)(sec A – tan A) = 1

⟹ \(\frac{2}{\sqrt{3}}\)(sec A – tan A) = 1; [given , tan A + sec A = \(\frac{2}{\sqrt{3}}\)]

⟹ sec A – tan A = \(\frac{\sqrt{3}}{2}\) ……………….. (ii)


Solving these two equations we get,

     2 sec A = \(\frac{2}{\sqrt{3}}\) + \(\frac{\sqrt{3}}{2}\)

 ⟹ 2 sec A = \(\frac{4 + 3}{2\sqrt{3}}\)

 ⟹ 2 sec A = \(\frac{7}{2\sqrt{3}}\)

⟹ sec A = \(\frac{7}{4\sqrt{3}}\) ……………….. (iii)


Putting the value of sec A = \(\frac{7}{4\sqrt{3}}\) in (i) we get,

     tan A + \(\frac{7}{4\sqrt{3}}\) = \(\frac{2}{\sqrt{3}}\)

⟹ tan A = \(\frac{2}{\sqrt{3}}\) - \(\frac{7}{4\sqrt{3}}\)

⟹ tan A = \(\frac{8 - 7}{4\sqrt{3}}\)

⟹ tan A = \(\frac{1}{4\sqrt{3}}\)……………….. (iv)


Now dividing (iv) by (iii) we get,

\(\frac{tan A}{sec A}\) = \(\frac{1}{7}\)

⟹ sin A = \(\frac{1}{7}\)

Therefore, sin A = \(\frac{1}{7}\).


Problems on establishing conditional results

15. If cos A + sin A = \(\sqrt{2}\) cos A, prove that cos A - sin A = \(\sqrt{2}\) sin A.

Solution:

Let cos A - sin A = k. Now,

(cos A + sin A)\(^{2}\) + (cos A - sin A)\(^{2}\) = cos\(^{2}\) A + sin\(^{2}\) A + 2 cos A ∙ sin A + cos\(^{2}\) A + sin\(^{2}\) A - 2 cos A ∙ sin A

                                            = 1 + 2 cos A sin A + 1 - 2 cos A sin A

                                            = 2

Therefore, (\(\sqrt{2}\) cos A)\(^{2}\) + k\(^{2}\) = 2

⟹ k\(^{2}\) = 2 - (\(\sqrt{2}\) cos A)\(^{2}\) 

⟹ k\(^{2}\) = 2 - 2cos\(^{2}\) A

⟹ k\(^{2}\) = 2(1 - cos\(^{2}\) A)

⟹ k\(^{2}\) = 2sin\(^{2}\) A; [Since, sin\(^{2}\) θ + cos\(^{2}\) θ = 1]

⟹ k = \(\sqrt{2}\) sin A

⟹ cos A - sin A = \(\sqrt{2}\) sin A. (Proved).





10th Grade Math

From Trigonometric Identities to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. What are Parallel Lines in Geometry? | Two Parallel Lines | Examples

    Apr 19, 24 04:39 PM

    Examples of Parallel Lines
    In parallel lines when two lines do not intersect each other at any point even if they are extended to infinity. What are parallel lines in geometry? Two lines which do not intersect each other

    Read More

  2. Perpendicular Lines | What are Perpendicular Lines in Geometry?|Symbol

    Apr 19, 24 04:01 PM

    Perpendicular Lines
    In perpendicular lines when two intersecting lines a and b are said to be perpendicular to each other if one of the angles formed by them is a right angle. In other words, Set Square Set Square If two…

    Read More

  3. Fundamental Geometrical Concepts | Point | Line | Properties of Lines

    Apr 19, 24 01:50 PM

    Point P
    The fundamental geometrical concepts depend on three basic concepts — point, line and plane. The terms cannot be precisely defined. However, the meanings of these terms are explained through examples.

    Read More

  4. What is a Polygon? | Simple Closed Curve | Triangle | Quadrilateral

    Apr 19, 24 01:22 PM

    Square - Polygon
    What is a polygon? A simple closed curve made of three or more line-segments is called a polygon. A polygon has at least three line-segments.

    Read More

  5. Simple Closed Curves | Types of Closed Curves | Collection of Curves

    Apr 18, 24 01:36 AM

    Closed Curves Examples
    In simple closed curves the shapes are closed by line-segments or by a curved line. Triangle, quadrilateral, circle, etc., are examples of closed curves.

    Read More