Trigonometric Identities

XYZ is a right-angled triangle in which ∠XZY = 90° and ∠XYZ = θ, which in an acute angle.

10th Grade Trigonometric Identities

We know,

sin θ = \(\frac{\textrm{Opposite}}{\textrm{Hypotenuse}}\) = \(\frac{o}{h}\);

cos θ = \(\frac{\textrm{Adjacent}}{\textrm{Hypotenuse}}\) = \(\frac{a}{h}\);

tan θ = \(\frac{\textrm{Opposite}}{\textrm{Adjacent}}\) = \(\frac{o}{a}\);

csc θ = \(\frac{\textrm{Hypotenuse}}{\textrm{Opposite}}\) = \(\frac{h}{o}\);

sec θ = \(\frac{\textrm{Hypotenuse}}{\textrm{Adjacent}}\) = \(\frac{h}{a}\);

cot θ = \(\frac{\textrm{Adjacent}}{\textrm{Opposite}}\) = \(\frac{a}{o}\).

Let’s multiply sin θ and csc θ

sin θ ∙ csc θ = \(\frac{o}{h}\) × \(\frac{h}{o}\) = 1

Therefore, csc θ = \(\frac{1}{sin θ}\)

Now, multiply cos θ and sec θ

cos θ ∙ sec θ = \(\frac{a}{h}\) × \(\frac{h}{a}\) = 1

Therefore, sec θ = \(\frac{1}{cos θ}\)

Again, multiply tan θ and cot θ

tan θ ∙ cot θ = \(\frac{o}{a}\) × \(\frac{a}{a}\) = 1

Therefore, cot θ = \(\frac{1}{tan θ}\)

Let’s divide sin θ by cos θ

sin θ ÷ cos θ = \(\frac{sin θ}{cos θ}\) = \(\frac{\frac{o}{h}}{\frac{a}{h}}\) = \(\frac{o}{a}\) = tan θ.

Therefore, tan θ = \(\frac{sin θ}{cos θ}\).

Similarly, divide cos θ by sin θ

cos θ ÷ sin θ = \(\frac{cos θ}{sin θ}\) = \(\frac{\frac{a}{h}}{\frac{o}{h}}\) = \(\frac{a}{o}\) = cot θ.

Therefore, cot θ = \(\frac{cos θ}{sin θ}\).

 

If a relation of equality between two expressions involving trigonometric ratios of an angle θ holds true for all values of θ then the equality is called a trigonometric identity. But it holds true only for some values of θ, the equality gives a trigonometric equation. There are a number of fundamental trigonometric identities.

I.  sin\(^{2}\) θ + cos\(^{2}\) θ = 1

We have, sin θ = \(\frac{o}{h}\) and cos θ = \(\frac{a}{h}\).

Therefore, sin\(^{2}\) θ + cos\(^{2}\) θ = \(\frac{o^{2}}{h^{2}}\) + \(\frac{a^{2}}{h^{2}}\).

                                       = \(\frac{o^{2} + a^{2}}{h^{2}}\)

                                       = \(\frac{h^{2}}{h^{2}}\); [Since, in the right-angled ∆XYZ, o\(^{2}\) + a\(^{2}\) = h\(^{2}\) (by Pythagoras’ Theorem)]

                                        = 1.

Therefore, sin\(^{2}\) θ + cos\(^{2}\) θ = 1.

Consequently, 1 - sin\(^{2}\) θ = cos\(^{2}\) θ and 1 - cos\(^{2}\) θ = sin\(^{2}\) θ.

 

II. sec\(^{2}\) θ - tan\(^{2}\) θ = 1

We have, sec θ = \(\frac{h}{a}\) and tan θ = \(\frac{o}{a}\).

Therefore, sec\(^{2}\) θ - tan\(^{2}\) θ = \(\frac{h^{2}}{a^{2}}\) - \(\frac{o^{2}}{a^{2}}\).

                                      = \(\frac{h^{2} - o^{2}}{a^{2}}\)

                                      = \(\frac{a^{2}}{a^{2}}\); [Since, in the right-angled ∆XYZ, o\(^{2}\) + a\(^{2}\) = h\(^{2}\) ⟹ h\(^{2}\) - o\(^{2}\) = a\(^{2}\) (by Pythagoras’ Theorem)]

                                      = 1.

Therefore, sec\(^{2}\) θ - tan\(^{2}\) θ = 1.

Consequently, 1 + tan\(^{2}\) θ = sec\(^{2}\) θ and sec\(^{2}\) θ - 1 = tan\(^{2}\) θ.

 

 

III. csc\(^{2}\) θ - cot\(^{2}\) θ = 1

We have, csc θ = \(\frac{h}{o}\) and cot θ = \(\frac{a}{o}\).

Therefore, csc\(^{2}\) θ - cot\(^{2}\) θ = \(\frac{h^{2}}{o^{2}}\) - \(\frac{a^{2}}{o^{2}}\).

                                       = \(\frac{h^{2} - a^{2}}{o^{2}}\)

                                       = \(\frac{o^{2}}{o^{2}}\); [Since, in the right-angled ∆XYZ, o\(^{2}\) + a\(^{2}\) = h\(^{2}\) ⟹ h\(^{2}\) - a\(^{2}\) = o\(^{2}\) (by Pythagoras’ Theorem)]

                                       = 1.

Therefore, csc\(^{2}\) θ - cot\(^{2}\) θ = 1.

Consequently, 1 + cot\(^{2}\) θ = csc\(^{2}\) θ and csc\(^{2}\) θ - 1 = cot\(^{2}\) θ.

These three trigonometric identities are also called Pythagorean identities.

Pythagorean Identities

Note: The equalities csc θ = \(\frac{1}{sin θ}\), sec θ = \(\frac{1}{cos θ}\), cot θ = \(\frac{1}{tan θ}\), tan θ = \(\frac{sin θ}{cos θ}\) and cot θ = \(\frac{cos θ}{sin θ}\) are holds for all values of θ. Therefore, these equalities are trigonometric identities.

Thus, we have the following trigonometric identities.


Table of Trigonometric Identities

1. csc θ = \(\frac{1}{sin θ}\),

2. sec θ = \(\frac{1}{cos θ}\),

3. cot θ = \(\frac{1}{tan θ}\),

4. tan θ = \(\frac{sin θ}{cos θ}\),

5. cot θ = \(\frac{cos θ}{sin θ}\)

6. sin\(^{2}\) θ + cos\(^{2}\) θ = 1; 1 - sin\(^{2}\) θ = cos\(^{2}\) θ, 1 - cos\(^{2}\) θ = sin\(^{2}\) θ.

7. sec\(^{2}\) θ - tan\(^{2}\) θ = 1; 1 + tan\(^{2}\) θ = sec\(^{2}\) θ; sec\(^{2}\) θ - 1 = tan\(^{2}\) θ.

8. csc\(^{2}\) θ - cot\(^{2}\) θ = 1

9. 1 + cot\(^{2}\) θ = csc\(^{2}\) θ,

10. csc\(^{2}\) θ - 1 = cot\(^{2}\) θ.

Table of Trigonometric Identities

Solved Examples on Trigonometric Identities:

1. Prove that sin\(^{4}\) θ + cos\(^{4}\)  θ + 2 sin\(^{2}\) θ ∙ cos\(^{2}\)  θ = 1

Solution:

LHS = sin\(^{4}\) θ + cos\(^{4}\)  θ + 2 sin\(^{2}\) θ ∙ cos\(^{2}\)  θ

       = (sin\(^{2}\) θ)\(^{2}\) + (cos\(^{2}\)  θ)\(^{2}\) + 2 sin\(^{2}\) θ ∙ cos\(^{2}\)  θ

       = (sin\(^{2}\) θ + cos\(^{2}\) θ)\(^{2}\)

       = 1\(^{2}\); [Since, sin\(^{2}\) θ + cos\(^{2}\) θ = 1]

       = 1 = RHS. (Proved).


How to Solve Trigonometric Identities Proving Problems?

2. Show that sec θ - cos θ = sin θ tan θ

Solution:

LHS =  sec θ - cos θ

      = \(\frac{1}{cos θ}\) - cos θ

      = \(\frac{1 - cos^{2} θ}{cos θ}\)

      = \(\frac{sin^{2} θ}{cos θ}\);  [Since, sin\(^{2}\) θ + cos\(^{2}\) θ = 1]

      = sin θ ∙ \(\frac{sin θ}{cos θ}\)

      = sin θ ∙ tan θ = RHS. (Proved)


3. Prove that 1 - \(\frac{cos^{2} A}{1 + sin A}\) = sin A

Solution:

LHS = 1 - \(\frac{cos^{2} A}{1 + sin A}\)

       = 1 - \(\frac{1 - sin^{2} A}{1 + sin A}\); [cos\(^{2}\) θ = 1 - sin\(^{2}\) θ]

       = 1 - \(\frac{(1 + sin A)(1 – sin A)}{1 + sin A}\)

       = 1 – (1 – sin A)

       = 1 – 1 + sin A

       = sin A = RHS. (Proved).


Verifying Trigonometric Identities & Equations

4. Prove that \(\frac{sin A}{1 + cos A}\) + \(\frac{sin A}{1 - cos A}\) = 2 csc A.

Solution:

LHS = \(\frac{sin A}{1 + cos A}\) + \(\frac{sin A}{1 - cos A}\)

       = \(\frac{sin A(1 – cos A) + sin A(1 + cos A)}{(1 + cos A)(1 – cos A)}\)

       = \(\frac{sin A – sin A ∙ cos A + sin A + sin A ∙ cos A)}{1 - cos^{2} A}\)

       = \(\frac{2 sin A}{sin^{2} A}\); [Since, 1 - cos\(^{2}\) A = sin\(^{2}\) A]

       = \(\frac{2}{sin A}\)

       = 2 ∙ \(\frac{1}{sin A}\); [Since, csc A = \(\frac{1}{sin A}\)]

       = RHS. (Proved).


Proving Trigonometric Identities Practice Problems Online

5. Prove that \(\frac{sin A}{1 + cos A}\) = \(\frac{1 – cos A}{sin A}\).

Solution:

LHS = \(\frac{sin A}{1 + cos A}\)

       = \(\frac{sin A}{1 + cos A}\) ∙ \(\frac{1 - cos A}{1 - cos A}\)

       = \(\frac{sin A(1 - cos A)}{1 - cos^{2} A}\)

       = \(\frac{sin A(1 - cos A)}{sin^{2} A}\); [Since 1 - cos\(^{2}\) θ = sin\(^{2}\) θ]

       = \(\frac{1 - cos A}{sin A}\) = RHS. (Proved).


Trigonometry Problems and Questions with Solutions

6. Prove that \(\sqrt{\frac{1 + sin θ}{1 - sin θ}}\) = sec θ +tan θ.

Solution:

LHS = \(\sqrt{\frac{1 + sin θ}{1 - sin θ}}\)

       = \(\sqrt{\frac{(1 + sin θ) (1 + sin θ)}{(1 - sin θ)(1 + sin θ)}}\)

       = \(\sqrt{\frac{(1 + sin θ)^{2}}{1 – sin^{2} θ}}\)

       = \(\sqrt{\frac{(1 + sin θ)^{2}}{cos^{2} θ}}\); [Since 1 - sin\(^{2}\) θ = cos\(^{2}\) θ]

       = \(\frac{1 + sin θ}{cos θ}\)

       = \(\frac{1}{cos θ}\) + \(\frac{sin θ}{cos θ}\)

       = secθ + tan θ = RHS. (Proved).


Trigonometric identities problems for class 10

7. Prove that tan\(^{2}\) A – tan\(^{2}\) B = \(\frac{sin^{2} A - sin^{2} B}{cos^{2} A ∙ cos^{2} B}\) = sec\(^{2}\) A - sec\(^{2}\) B

Solution:

LHS = tan\(^{2}\) A – tan\(^{2}\) B

       = \(\frac{sin^{2} A}{cos^{2} A}\) - \(\frac{ sin^{2} B}{cos^{2} B}\)

       = \(\frac{sin^{2} A ∙ cos^{2} B - sin^{2} B ∙ cos^{2} A}{cos^{2} A ∙ cos^{2} B}\)

       = \(\frac{sin^{2} A (1 - sin^{2} B) - sin^{2} B(1 - sin^{2} A)}{cos^{2} A ∙ cos^{2} B}\); [Since, cos2 B = 1 - sin2 B and cos2 A = 1 - sin2 A]

       = \(\frac{sin^{2} A  - sin^{2} A  sin^{2} B - sin^{2} B + sin^{2} B sin^{2} A}{cos^{2} A ∙ cos^{2} B}\);

        = \(\frac{sin^{2} A - sin^{2} B}{cos^{2} A ∙ cos^{2} B}\) = MHS

        = \(\frac{(1 - cos^{2} A) - (1 - cos^{2} B)}{cos^{2} A ∙ cos^{2} B}\); [Since, sin2 A = 1 - cos2 A and sin2 B = 1 - cos2 B]

        = \(\frac{cos^{2} B - cos^{2} A}{cos^{2} A ∙ cos^{2} B}\)

        = \(\frac{cos^{2} B}{cos^{2} A ∙ cos^{2} B}\) - \(\frac{cos^{2} A}{cos^{2} A ∙ cos^{2} B}\)

        = \(\frac{1}{cos^{2} A}\) - \(\frac{1}{cos^{2} B}\)

        = sec\(^{2}\) A – sec\(^{2}\) B = RHS. (Proved)

Again, 

LHS = tan\(^{2}\) A – tan\(^{2}\) B

       = (sec\(^{2}\) A – 1) – (sec\(^{2}\) B – 1); [Since, tan\(^{2}\) θ = sec\(^{2}\) θ – 1 ]

       = sec\(^{2}\) A – 1 – (sec\(^{2}\) B +1

       = sec\(^{2}\) A – sec\(^{2}\) B = RHS. (Proved).


Solving Trigonometric Equations using Trigonometric Identities

8. Prove that tan\(^{2}\) θ - sin\(^{2}\) θ = tan\(^{2}\) θ ∙ sin\(^{2}\) θ

Solution:

LHS = tan\(^{2}\) θ - sin\(^{2}\) θ

       = tan\(^{2}\) θ - \(\frac{sin^{2} θ}{cos^{2} θ}\) ∙ cos\(^{2}\)

       = tan\(^{2}\) θ - tan\(^{2}\) θ ∙ cos\(^{2}\)

       = tan\(^{2}\) θ(1 - cos\(^{2}\))

       = tan\(^{2}\) θ ∙ sin\(^{2}\) θ = RHS. (Proved).


List of trigonometric identities Problems

9. Prove that 1 + \(\frac{cot^{2} θ}{1 + csc θ}\) = csc θ

Solution:

LHS = 1 + \(\frac{cot^{2} θ}{1 + csc θ}\)

       = 1 + \(\frac{csc^{2} θ - 1}{1 + csc θ}\)

       = 1 + \(\frac{(csc θ + 1)(csc θ – 1)}{1 + csc θ}\)

       = 1 + (csc θ – 1)

       = 1 + csc θ – 1

       = csc θ = RHS. (Proved).


Solve the problem using trigonometric identities

10. Prove that \(\frac{sec θ - )}{sec θ + 1}\) = (cot θ – csc θ)\(^{2}\).

Solution:

LHS = \(\frac{sec θ - 1}{sec θ + 1}\)

       = \(\frac{sec θ - 1}{sec θ + 1}\) ∙ \(\frac{sec θ - 1}{sec θ - 1}\)

       = \(\frac{(sec θ - 1)^{2}}{sec^{2} θ - 1}\)

       = \(\frac{(sec θ - 1)^{2}}{tan^{2} θ}\); [Since sec\(^{2}\) θ – 1 = tan\(^{2}\) θ]

       = \((\frac{sec θ - 1}{tan θ})^{2}\)

       = \((\frac{\frac{1}{cos θ} - 1}{\frac{sin θ }{cos θ} })^{2}\)

       = \((\frac{1 – cos θ}{cos θ} ∙ \frac{cos θ}{sin θ})^{2}\)

       = \((\frac{1 – cos θ}{sin θ})^{2}\)

       = \((\frac{1}{sin θ} - \frac{cos θ}{sin θ})^{2}\)

       = (csc θ – cot θ)\(^{2}\)

       = (cot θ – csc θ)\(^{2}\) = RHS. (Proved).


Proving Trigonometric Identities

11. Prove that \(\frac{sin A}{cot A + csc A}\) = 2 + \(\frac{sin A}{cot A - csc A }\)

Solution:

LHS = \(\frac{sin A}{cot A + csc A}\)

       = \(\frac{sin A(cot A - csc A)}{(cot A + csc A)(cot A - csc A)}\)

       = \(\frac{sin A ∙ cot A – sin A ∙ csc A}{cot^{2} A – csc^{2} A}\)

       = \(\frac{sin A ∙ \frac{cos A}{sin A} – 1}{-1}\); [since, sin θ csc θ = 1, csc\(^{2}\) θ – cot\(^{2}\)  θ = 1]

       = \(\frac{cos A - 1}{-1}\)

       = 1 – cos A

RHS = 2 + \(\frac{sin A}{cot A - csc A}\)

        = 2 + \(\frac{sin A}{ cot A - csc A}\) ∙ \(\frac{(cot A + csc A)}{(cot A + csc A)}\)

        = 2 + \(\frac{sin A(cot A + csc A)}{cot^{2} A – csc^{2} A}\)

        = 2 + \(\frac{sin A(\frac{cos A}{sin A} + \frac{1}{sin A})}{-1}\)

        = 2 + \(\frac{cos A + 1}{-1}\)

        = 2 – (cos A + 1)

        = 2 – cos A – 1

        = 1 – cos A

Therefore, LHS = RHS. (Proved).


Alternative Method

The identity is established if we can prove that

\(\frac{sin A}{cot A + csc A}\) - \(\frac{sin A}{cot A - csc A }\) = 2

Now, here  

LHS = \(\frac{sin A}{cot A + csc A}\) - \(\frac{sin A}{cot A - csc A }\)

       = \(\frac{sin A(cot A - csc A) – sin A(cot A + csc A)}{( cot A + csc A)(cot A - csc A)}\)

       = \(\frac{sin A ∙ cot A – sin A ∙ csc A – sin A ∙ cot A – sin A ∙ csc A}{(cot A + csc A)(cot A - csc A)}\)

       = \(\frac{–2 sin A ∙ csc A}{cot^{2} A – csc^{2} A}\)

       = \(\frac{–2}{-1 }\); [Since sin θ csc θ = 1, csc\(^{2}\) θ – cot\(^{2}\)  θ = 1]

       = 2 = RHS. (Proved)


Problems on Evaluation using Trigonometric Identities:

12. If sin θ + csc θ = 2, find the value of sin\(^{10}\) θ + csc\(^{11}\) θ

Solution:

Given that, sin θ + csc θ = 2 ……………. (i)

⟹ sin θ + \(\frac{1}{ sin θ}\) = 2

⟹ \(\frac{ sin^{2} θ + 1}{sin θ }\) = 2

⟹ sin\(^{2}\) θ + 1= 2 sin θ

⟹ sin\(^{2}\) θ - 2 sin θ + 1 = 0

⟹ (sin θ - 1)\(^{2}\) = 0

⟹ sin θ - 1 = 0

⟹ sin θ = 1

⟹ csc θ = \(\frac{1}{ sin θ}\) = \(\frac{1}{ 1}\) = 1

Therefore, csc θ = 1.

Now, sin\(^{10}\) θ + csc\(^{11}\) θ

= 1\(^{10}\) + 1\(^{11}\)

= 1 + 1

= 2.

 

13. If sec θ – tan θ = \(\frac{1}{3}\), find the value of sec A and tan A.

Solution:

Given, sec θ – tan θ = \(\frac{1}{3}\) ………… (i)

We know that the Pythagorean identity, sec\(^{2}\) θ - tan\(^{2}\) θ = 1.

                   ⟹ (sec θ + tan θ)(sec θ - tan θ) = 1

                   ⟹ (sec θ + tan θ) ∙ \(\frac{1}{3}\) = 1, [Given sec θ – tan θ = \(\frac{1}{3}\)]

                   ⟹ sec θ + tan θ = 3 ……….. (ii)

Now adding (i) and (ii) we get

                       2 sec θ = \(\frac{1}{3}\) + 3

                   ⟹ 2 sec θ = \(\frac{10}{3}\)

                   ⟹ sec θ = \(\frac{10}{3}\) ∙ \(\frac{1}{2}\)

                   ⟹ sec θ = \(\frac{5}{3}\)

Therefore, sec θ = \(\frac{5}{3}\)

Putting the value of sec θ = \(\frac{5}{3}\) in (ii), we get

\(\frac{5}{3}\) + tan θ = 3

⟹ tan θ = 3 - \(\frac{5}{3}\)

⟹ tan θ = \(\frac{4}{3}\)

Therefore, tan θ = \(\frac{4}{3}\).


14. If tan A + sec A = \(\frac{2}{\sqrt{3}}\), find the value of sin A

Solution:

Given that, tan A + sec A = \(\frac{2}{\sqrt{3}}\) ……………….. (i)

We know the Pythagorean trigonometric identity,

       sec\(^{2}\) A - tan\(^{2}\) A = 1.

⟹ (sec A + tan A)(sec A – tan A) = 1

⟹ \(\frac{2}{\sqrt{3}}\)(sec A – tan A) = 1; [given , tan A + sec A = \(\frac{2}{\sqrt{3}}\)]

⟹ sec A – tan A = \(\frac{\sqrt{3}}{2}\) ……………….. (ii)


Solving these two equations we get,

     2 sec A = \(\frac{2}{\sqrt{3}}\) + \(\frac{\sqrt{3}}{2}\)

 ⟹ 2 sec A = \(\frac{4 + 3}{2\sqrt{3}}\)

 ⟹ 2 sec A = \(\frac{7}{2\sqrt{3}}\)

⟹ sec A = \(\frac{7}{4\sqrt{3}}\) ……………….. (iii)


Putting the value of sec A = \(\frac{7}{4\sqrt{3}}\) in (i) we get,

     tan A + \(\frac{7}{4\sqrt{3}}\) = \(\frac{2}{\sqrt{3}}\)

⟹ tan A = \(\frac{2}{\sqrt{3}}\) - \(\frac{7}{4\sqrt{3}}\)

⟹ tan A = \(\frac{8 - 7}{4\sqrt{3}}\)

⟹ tan A = \(\frac{1}{4\sqrt{3}}\)……………….. (iv)


Now dividing (iv) by (iii) we get,

\(\frac{tan A}{sec A}\) = \(\frac{1}{7}\)

⟹ sin A = \(\frac{1}{7}\)

Therefore, sin A = \(\frac{1}{7}\).


Problems on establishing conditional results

15. If cos A + sin A = \(\sqrt{2}\) cos A, prove that cos A - sin A = \(\sqrt{2}\) sin A.

Solution:

Let cos A - sin A = k. Now,

(cos A + sin A)\(^{2}\) + (cos A - sin A)\(^{2}\) = cos\(^{2}\) A + sin\(^{2}\) A + 2 cos A ∙ sin A + cos\(^{2}\) A + sin\(^{2}\) A - 2 cos A ∙ sin A

                                            = 1 + 2 cos A sin A + 1 - 2 cos A sin A

                                            = 2

Therefore, (\(\sqrt{2}\) cos A)\(^{2}\) + k\(^{2}\) = 2

⟹ k\(^{2}\) = 2 - (\(\sqrt{2}\) cos A)\(^{2}\) 

⟹ k\(^{2}\) = 2 - 2cos\(^{2}\) A

⟹ k\(^{2}\) = 2(1 - cos\(^{2}\) A)

⟹ k\(^{2}\) = 2sin\(^{2}\) A; [Since, sin\(^{2}\) θ + cos\(^{2}\) θ = 1]

⟹ k = \(\sqrt{2}\) sin A

⟹ cos A - sin A = \(\sqrt{2}\) sin A. (Proved).





10th Grade Math

From Trigonometric Identities to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Worksheets on Comparison of Numbers | Find the Greatest Number

    Oct 10, 24 05:15 PM

    Comparison of Two Numbers
    In worksheets on comparison of numbers students can practice the questions for fourth grade to compare numbers. This worksheet contains questions on numbers like to find the greatest number, arranging…

    Read More

  2. Counting Before, After and Between Numbers up to 10 | Number Counting

    Oct 10, 24 10:06 AM

    Before After Between
    Counting before, after and between numbers up to 10 improves the child’s counting skills.

    Read More

  3. Expanded Form of a Number | Writing Numbers in Expanded Form | Values

    Oct 10, 24 03:19 AM

    Expanded Form of a Number
    We know that the number written as sum of the place-values of its digits is called the expanded form of a number. In expanded form of a number, the number is shown according to the place values of its…

    Read More

  4. Place Value | Place, Place Value and Face Value | Grouping the Digits

    Oct 09, 24 05:16 PM

    Place Value of 3-Digit Numbers
    The place value of a digit in a number is the value it holds to be at the place in the number. We know about the place value and face value of a digit and we will learn about it in details. We know th…

    Read More

  5. 3-digit Numbers on an Abacus | Learning Three Digit Numbers | Math

    Oct 08, 24 10:53 AM

    3-Digit Numbers on an Abacus
    We already know about hundreds, tens and ones. Now let us learn how to represent 3-digit numbers on an abacus. We know, an abacus is a tool or a toy for counting. An abacus which has three rods.

    Read More