Loading [MathJax]/jax/output/HTML-CSS/jax.js

Trigonometric Identities

XYZ is a right-angled triangle in which ∠XZY = 90° and ∠XYZ = θ, which in an acute angle.

10th Grade Trigonometric Identities

We know,

sin θ = OppositeHypotenuse = oh;

cos θ = AdjacentHypotenuse = ah;

tan θ = OppositeAdjacent = oa;

csc θ = HypotenuseOpposite = ho;

sec θ = HypotenuseAdjacent = ha;

cot θ = AdjacentOpposite = ao.

Let’s multiply sin θ and csc θ

sin θ ∙ csc θ = oh × ho = 1

Therefore, csc θ = 1sinθ

Now, multiply cos θ and sec θ

cos θ ∙ sec θ = ah × ha = 1

Therefore, sec θ = 1cosθ

Again, multiply tan θ and cot θ

tan θ ∙ cot θ = oa × aa = 1

Therefore, cot θ = 1tanθ

Let’s divide sin θ by cos θ

sin θ ÷ cos θ = sinθcosθ = ohah = oa = tan θ.

Therefore, tan θ = sinθcosθ.

Similarly, divide cos θ by sin θ

cos θ ÷ sin θ = cosθsinθ = ahoh = ao = cot θ.

Therefore, cot θ = cosθsinθ.

 

If a relation of equality between two expressions involving trigonometric ratios of an angle θ holds true for all values of θ then the equality is called a trigonometric identity. But it holds true only for some values of θ, the equality gives a trigonometric equation. There are a number of fundamental trigonometric identities.

I.  sin2 θ + cos2 θ = 1

We have, sin θ = oh and cos θ = ah.

Therefore, sin2 θ + cos2 θ = o2h2 + a2h2.

                                       = o2+a2h2

                                       = h2h2; [Since, in the right-angled ∆XYZ, o2 + a2 = h2 (by Pythagoras’ Theorem)]

                                        = 1.

Therefore, sin2 θ + cos2 θ = 1.

Consequently, 1 - sin2 θ = cos2 θ and 1 - cos2 θ = sin2 θ.

 

II. sec2 θ - tan2 θ = 1

We have, sec θ = ha and tan θ = oa.

Therefore, sec2 θ - tan2 θ = h2a2 - o2a2.

                                      = h2o2a2

                                      = a2a2; [Since, in the right-angled ∆XYZ, o2 + a2 = h2 ⟹ h2 - o2 = a2 (by Pythagoras’ Theorem)]

                                      = 1.

Therefore, sec2 θ - tan2 θ = 1.

Consequently, 1 + tan2 θ = sec2 θ and sec2 θ - 1 = tan2 θ.

 

 

III. csc2 θ - cot2 θ = 1

We have, csc θ = ho and cot θ = ao.

Therefore, csc2 θ - cot2 θ = h2o2 - a2o2.

                                       = h2a2o2

                                       = o2o2; [Since, in the right-angled ∆XYZ, o2 + a2 = h2 ⟹ h2 - a2 = o2 (by Pythagoras’ Theorem)]

                                       = 1.

Therefore, csc2 θ - cot2 θ = 1.

Consequently, 1 + cot2 θ = csc2 θ and csc2 θ - 1 = cot2 θ.

These three trigonometric identities are also called Pythagorean identities.

Pythagorean Identities

Note: The equalities csc θ = 1sinθ, sec θ = 1cosθ, cot θ = 1tanθ, tan θ = sinθcosθ and cot θ = cosθsinθ are holds for all values of θ. Therefore, these equalities are trigonometric identities.

Thus, we have the following trigonometric identities.


Table of Trigonometric Identities

1. csc θ = 1sinθ,

2. sec θ = 1cosθ,

3. cot θ = 1tanθ,

4. tan θ = sinθcosθ,

5. cot θ = cosθsinθ

6. sin2 θ + cos2 θ = 1; 1 - sin2 θ = cos2 θ, 1 - cos2 θ = sin2 θ.

7. sec2 θ - tan2 θ = 1; 1 + tan2 θ = sec2 θ; sec2 θ - 1 = tan2 θ.

8. csc2 θ - cot2 θ = 1

9. 1 + cot2 θ = csc2 θ,

10. csc2 θ - 1 = cot2 θ.

Table of Trigonometric Identities

Solved Examples on Trigonometric Identities:

1. Prove that sin4 θ + cos4  θ + 2 sin2 θ ∙ cos2  θ = 1

Solution:

LHS = sin4 θ + cos4  θ + 2 sin2 θ ∙ cos2  θ

       = (sin2 θ)2 + (cos2  θ)2 + 2 sin2 θ ∙ cos2  θ

       = (sin2 θ + cos2 θ)2

       = 12; [Since, sin2 θ + cos2 θ = 1]

       = 1 = RHS. (Proved).


How to Solve Trigonometric Identities Proving Problems?

2. Show that sec θ - cos θ = sin θ tan θ

Solution:

LHS =  sec θ - cos θ

      = 1cosθcos θ

      = \(\frac{1 - cos^{2} θ}{cos θ}\)

      = \(\frac{sin^{2} θ}{cos θ}\);  [Since, sin2 θ + cos2 θ = 1]

      = sin θ ∙ \(\frac{sin θ}{cos θ}\)

      = sin θ ∙ tan θ = RHS. (Proved)


3. Prove that 1 - cos2A1+sinA = sin A

Solution:

LHS = 1 - cos2A1+sinA

       = 1 - 1sin2A1+sinA; [cos2 θ = 1 - sin2 θ]

       = 1 - (1+sinA)(1sinA)1+sinA

       = 1 – (1 – sin A)

       = 1 – 1 + sin A

       = sin A = RHS. (Proved).


Verifying Trigonometric Identities & Equations

4. Prove that sinA1+cosA + sinA1cosA = 2 csc A.

Solution:

LHS = sinA1+cosA + sinA1cosA

       = sinA(1cosA)+sinA(1+cosA)(1+cosA)(1cosA)

       = sinAsinAcosA+sinA+sinAcosA)1cos2A

       = 2sinAsin2A; [Since, 1 - cos2 A = sin2 A]

       = 2sinA

       = 2 ∙ 1sinA; [Since, csc A = 1sinA]

       = RHS. (Proved).


Proving Trigonometric Identities Practice Problems Online

5. Prove that sinA1+cosA = 1cosAsinA.

Solution:

LHS = sinA1+cosA

       = sinA1+cosA1cosA1cosA

       = sinA(1cosA)1cos2A

       = sinA(1cosA)sin2A; [Since 1 - cos2 θ = sin2 θ]

       = 1cosAsinA = RHS. (Proved).


Trigonometry Problems and Questions with Solutions

6. Prove that 1+sinθ1sinθ = sec θ +tan θ.

Solution:

LHS = 1+sinθ1sinθ

       = (1+sinθ)(1+sinθ)(1sinθ)(1+sinθ)

       = (1+sinθ)21sin2θ

       = (1+sinθ)2cos2θ; [Since 1 - sin2 θ = cos2 θ]

       = 1+sinθcosθ

       = 1cosθ + sinθcosθ

       = secθ + tan θ = RHS. (Proved).


Trigonometric identities problems for class 10

7. Prove that tan2 A – tan2 B = sin2Asin2Bcos2Acos2B = sec2 A - sec2 B

Solution:

LHS = tan2 A – tan2 B

       = sin2Acos2A - sin2Bcos2B

       = sin2Acos2Bsin2Bcos2Acos2Acos2B

       = sin2A(1sin2B)sin2B(1sin2A)cos2Acos2B; [Since, cos2 B = 1 - sin2 B and cos2 A = 1 - sin2 A]

       = sin2Asin2Asin2Bsin2B+sin2Bsin2Acos2Acos2B;

        = sin2Asin2Bcos2Acos2B = MHS

        = (1cos2A)(1cos2B)cos2Acos2B; [Since, sin2 A = 1 - cos2 A and sin2 B = 1 - cos2 B]

        = cos2Bcos2Acos2Acos2B

        = cos2Bcos2Acos2B - cos2Acos2Acos2B

        = 1cos2A - 1cos2B

        = sec2 A – sec2 B = RHS. (Proved)

Again, 

LHS = tan2 A – tan2 B

       = (sec2 A – 1) – (sec2 B – 1); [Since, tan2 θ = sec2 θ – 1 ]

       = sec2 A – 1 – (sec2 B +1

       = sec2 A – sec2 B = RHS. (Proved).


Solving Trigonometric Equations using Trigonometric Identities

8. Prove that tan2 θ - sin2 θ = tan2 θ ∙ sin2 θ

Solution:

LHS = tan2 θ - sin2 θ

       = tan2 θ - sin2θcos2θ ∙ cos2

       = tan2 θ - tan2 θ ∙ cos2

       = tan2 θ(1 - cos2)

       = tan2 θ ∙ sin2 θ = RHS. (Proved).


List of trigonometric identities Problems

9. Prove that 1 + cot2θ1+cscθ = csc θ

Solution:

LHS = 1 + cot2θ1+cscθ

       = 1 + csc2θ11+cscθ

       = 1 + (cscθ+1)(cscθ1)1+cscθ

       = 1 + (csc θ – 1)

       = 1 + csc θ – 1

       = csc θ = RHS. (Proved).


Solve the problem using trigonometric identities

10. Prove that secθ)secθ+1 = (cot θ – csc θ)2.

Solution:

LHS = secθ1secθ+1

       = secθ1secθ+1secθ1secθ1

       = (secθ1)2sec2θ1

       = (secθ1)2tan2θ; [Since sec2 θ – 1 = tan2 θ]

       = (secθ1tanθ)2

       = (1cosθ1sinθcosθ)2

       = (1cosθcosθcosθsinθ)2

       = (1cosθsinθ)2

       = (1sinθcosθsinθ)2

       = (csc θ – cot θ)2

       = (cot θ – csc θ)2 = RHS. (Proved).


Proving Trigonometric Identities

11. Prove that sinAcotA+cscA = 2 + sinAcotAcscA

Solution:

LHS = sinAcotA+cscA

       = sinA(cotAcscA)(cotA+cscA)(cotAcscA)

       = sinAcotAsinAcscAcot2Acsc2A

       = sinAcosAsinA11; [since, sin θ csc θ = 1, csc2 θ – cot2  θ = 1]

       = cosA11

       = 1 – cos A

RHS = 2 + sinAcotAcscA

        = 2 + sinAcotAcscA(cotA+cscA)(cotA+cscA)

        = 2 + sinA(cotA+cscA)cot2Acsc2A

        = 2 + sinA(cosAsinA+1sinA)1

        = 2 + cosA+11

        = 2 – (cos A + 1)

        = 2 – cos A – 1

        = 1 – cos A

Therefore, LHS = RHS. (Proved).


Alternative Method

The identity is established if we can prove that

sinAcotA+cscA - sinAcotAcscA = 2

Now, here  

LHS = sinAcotA+cscA - sinAcotAcscA

       = sinA(cotAcscA)sinA(cotA+cscA)(cotA+cscA)(cotAcscA)

       = sinAcotAsinAcscAsinAcotAsinAcscA(cotA+cscA)(cotAcscA)

       = 2sinAcscAcot2Acsc2A

       = 21; [Since sin θ csc θ = 1, csc2 θ – cot2  θ = 1]

       = 2 = RHS. (Proved)


Problems on Evaluation using Trigonometric Identities:

12. If sin θ + csc θ = 2, find the value of sin10 θ + csc11 θ

Solution:

Given that, sin θ + csc θ = 2 ……………. (i)

⟹ sin θ + 1sinθ = 2

sin2θ+1sinθ = 2

⟹ sin2 θ + 1= 2 sin θ

⟹ sin2 θ - 2 sin θ + 1 = 0

⟹ (sin θ - 1)2 = 0

⟹ sin θ - 1 = 0

⟹ sin θ = 1

⟹ csc θ = 1sinθ = 11 = 1

Therefore, csc θ = 1.

Now, sin10 θ + csc11 θ

= 110 + 111

= 1 + 1

= 2.

 

13. If sec θ – tan θ = 13, find the value of sec A and tan A.

Solution:

Given, sec θ – tan θ = 13 ………… (i)

We know that the Pythagorean identity, sec2 θ - tan2 θ = 1.

                   ⟹ (sec θ + tan θ)(sec θ - tan θ) = 1

                   ⟹ (sec θ + tan θ) ∙ 13 = 1, [Given sec θ – tan θ = 13]

                   ⟹ sec θ + tan θ = 3 ……….. (ii)

Now adding (i) and (ii) we get

                       2 sec θ = 13 + 3

                   ⟹ 2 sec θ = 103

                   ⟹ sec θ = 10312

                   ⟹ sec θ = 53

Therefore, sec θ = 53

Putting the value of sec θ = 53 in (ii), we get

53 + tan θ = 3

⟹ tan θ = 3 - 53

⟹ tan θ = 43

Therefore, tan θ = 43.


14. If tan A + sec A = 23, find the value of sin A

Solution:

Given that, tan A + sec A = 23 ……………….. (i)

We know the Pythagorean trigonometric identity,

       sec2 A - tan2 A = 1.

⟹ (sec A + tan A)(sec A – tan A) = 1

23(sec A – tan A) = 1; [given , tan A + sec A = 23]

⟹ sec A – tan A = 32 ……………….. (ii)


Solving these two equations we get,

     2 sec A = 23 + 32

 ⟹ 2 sec A = 4+323

 ⟹ 2 sec A = 723

⟹ sec A = 743 ……………….. (iii)


Putting the value of sec A = 743 in (i) we get,

     tan A + 743 = 23

⟹ tan A = 23 - 743

⟹ tan A = 8743

⟹ tan A = 143……………….. (iv)


Now dividing (iv) by (iii) we get,

tanAsecA = 17

⟹ sin A = 17

Therefore, sin A = 17.


Problems on establishing conditional results

15. If cos A + sin A = 2 cos A, prove that cos A - sin A = 2 sin A.

Solution:

Let cos A - sin A = k. Now,

(cos A + sin A)2(cos A - sin A)2 = cos2 A + sin2 A + 2 cos A ∙ sin A + cos2 A + sin2 A - 2 cos A ∙ sin A

                                            = 1 + 2 cos A sin A + 1 - 2 cos A sin A

                                            = 2

Therefore, (2 cos A)2 + k2 = 2

⟹ k2 = 2 - (2 cos A)2 

⟹ k2 = 2 - 2cos2 A

⟹ k2 = 2(1 - cos2 A)

⟹ k2 = 2sin2 A; [Since, sin2 θ + cos2 θ = 1]

⟹ k = 2 sin A

⟹ cos A - sin A = 2 sin A. (Proved).





10th Grade Math

From Trigonometric Identities to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Multiplication of Decimal Numbers | Multiplying Decimals | Decimals

    May 03, 25 04:38 PM

    Multiplication of Decimal Numbers
    The rules of multiplying decimals are: (i) Take the two numbers as whole numbers (remove the decimal) and multiply. (ii) In the product, place the decimal point after leaving digits equal to the total…

    Read More

  2. Magic Square | Add upto 15 | Add upto 27 | Fibonacci Sequence | Videos

    May 03, 25 10:50 AM

    check the magic square
    In a magic square, every row, column and each of the diagonals add up to the same total. Here is a magic square. The numbers 1 to 9 are placed in the small squares in such a way that no number is repe

    Read More

  3. Division by 10 and 100 and 1000 |Division Process|Facts about Division

    May 03, 25 10:41 AM

    Divide 868 by 10
    Division by 10 and 100 and 1000 are explained here step by step. when we divide a number by 10, the digit at ones place of the given number becomes the remainder and the digits at the remaining places…

    Read More

  4. Multiplication by Ten, Hundred and Thousand |Multiply by 10, 100 &1000

    May 01, 25 11:57 PM

    Multiply by 10
    To multiply a number by 10, 100, or 1000 we need to count the number of zeroes in the multiplier and write the same number of zeroes to the right of the multiplicand. Rules for the multiplication by 1…

    Read More

  5. Adding and Subtracting Large Decimals | Examples | Worksheet | Answers

    May 01, 25 03:01 PM

    Here we will learn adding and subtracting large decimals. We have already learnt how to add and subtract smaller decimals. Now we will consider some examples involving larger decimals.

    Read More