Subtraction of Complex Numbers

We will discuss here about the usual mathematical operation - subtraction of two complex numbers.

How do you subtract Complex Numbers?

Let z1 = p + iq and z2 = r + is be any two complex numbers, then the subtraction of z2 from z1 is defined as

z1 - z2 = z1 + (-z2)

= (p + iq) + (-r - is)

= (p - r) + i(q - s)


The following steps of subtraction of complex numbers are given below:

Step I: Distribute the negative

Step II: Group the real part of the complex number and the imaginary part of the complex number.

Step III: Combine the like terms and simplify

For example, let z1 = 6 + 4i and z2 = -7 + 5i, then

z1 - z2 = (6 + 4i) - (-7 + 5i)

= (6 + 4i) + (7 - 5i), [Distributing the negative sign]

= (6 + 7) + (4 - 5)i, [Grouping the real part of the complex number and the imaginary part of the complex number.]

= 13 - i, [Combining the like terms and simplify]

and z2 - z1 = (-7 + 5i) - (6 + 4i)

= (-7 + 5i) + (-6 - 4i), [Distributing the negative sign]

= (-7 - 6) + (5 - 4)i, [Grouping the real part of the complex number and the imaginary part of the complex number.]

 = -13 + i

 

Solved examples on subtraction of complex numbers:

1. Find the difference between the complex numbers (2 + 3i) from (-9 - 2i).

Solution:

(-9 - 2i) - (2 + 3i)

= (-9 - 2i) + (-2 - 3i), [Distributing the negative sign]

= (- 9 - 2) + (-2 - 3)i, [Grouping the real part of the complex number and the imaginary part of the complex number.]

= -11 - 5i

 

2. Evaluate: (7√5 + 3i) - (√5 - 2i)

Solution:

(7√5 + 3i) - (√5 - 2i)

= (7√5 + 3i) + (-√5 + 2i), [Distributing the negative sign]

= (7√5 - √5) + (3 + 2)i, [Grouping the real part of the complex number and the imaginary part of the complex number.]

= 6√5 + 5i

 

3. Express the complex number (8 - 3i) - (-6 + 2i) in the standard form a + ib.

Solution:

(8 - 3i) - (-6 + 2i)

= (8 - 3i) + (6 - 2i), [Distributing the negative sign]

= (8 + 6) + (-3 – 2)i, [Grouping the real part of the complex number and the imaginary part of the complex number.]

= 14 - 5i, which is the required form.

 

Note: The final answer of Subtraction of complex numbers must be in simplest or standard form a + ib.





11 and 12 Grade Math 

From Subtraction of Complex Numbers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Multiplying Decimals | Product of the Two Decimal Numbers

    May 05, 25 01:05 AM

    Practice the math questions given in the worksheet on multiplying decimals. Multiply the decimals to find the product of the two decimal numbers, same like multiplying whole numbers.

    Read More

  2. Multiplication of a Decimal by 10, 100, 1000 | Multiplying decimals

    May 05, 25 12:23 AM

    Multiplication of a Decimal by 10, 100, 1000
    The working rule of multiplication of a decimal by 10, 100, 1000, etc... are: When the multiplier is 10, 100 or 1000, we move the decimal point to the right by as many places as number of zeroes after…

    Read More

  3. Multiplication of Decimal Numbers | Multiplying Decimals | Decimals

    May 04, 25 11:38 PM

    Multiplication of Decimal Numbers
    The rules of multiplying decimals are: (i) Take the two numbers as whole numbers (remove the decimal) and multiply. (ii) In the product, place the decimal point after leaving digits equal to the total…

    Read More

  4. Multiplication of a Decimal by a Decimal |Multiplying Decimals Example

    May 04, 25 11:37 PM

    Multiplication of a Decimal by a Decimal
    To multiply a decimal number by a decimal number, we first multiply the two numbers ignoring the decimal points and then place the decimal point in the product in such a way that decimal places in the…

    Read More

  5. BODMAS Rule | Order of Operation |Definition,Examples,Problems | Video

    May 04, 25 03:47 PM

    What is BODMAS Rule in Math?
    Easy and simple way to remember BODMAS rule!! B → Brackets first (parentheses) O → Of (orders i.e. Powers and Square Roots, Cube Roots, etc.) DM → Division and Multiplication

    Read More