Subtraction of Complex Numbers

We will discuss here about the usual mathematical operation - subtraction of two complex numbers.

How do you subtract Complex Numbers?

Let z\(_{1}\) = p + iq and z\(_{2}\) = r + is be any two complex numbers, then the subtraction of z\(_{2}\) from z\(_{1}\) is defined as

z\(_{1}\) - z\(_{2}\) = z\(_{1}\) + (-z\(_{2}\))

= (p + iq) + (-r - is)

= (p - r) + i(q - s)


The following steps of subtraction of complex numbers are given below:

Step I: Distribute the negative

Step II: Group the real part of the complex number and the imaginary part of the complex number.

Step III: Combine the like terms and simplify

For example, let z\(_{1}\) = 6 + 4i and z\(_{2}\) = -7 + 5i, then

z\(_{1}\) - z\(_{2}\) = (6 + 4i) - (-7 + 5i)

= (6 + 4i) + (7 - 5i), [Distributing the negative sign]

= (6 + 7) + (4 - 5)i, [Grouping the real part of the complex number and the imaginary part of the complex number.]

= 13 - i, [Combining the like terms and simplify]

and z2 - z1 = (-7 + 5i) - (6 + 4i)

= (-7 + 5i) + (-6 - 4i), [Distributing the negative sign]

= (-7 - 6) + (5 - 4)i, [Grouping the real part of the complex number and the imaginary part of the complex number.]

 = -13 + i

 

Solved examples on subtraction of complex numbers:

1. Find the difference between the complex numbers (2 + 3i) from (-9 - 2i).

Solution:

(-9 - 2i) - (2 + 3i)

= (-9 - 2i) + (-2 - 3i), [Distributing the negative sign]

= (- 9 - 2) + (-2 - 3)i, [Grouping the real part of the complex number and the imaginary part of the complex number.]

= -11 - 5i

 

2. Evaluate: (7√5 + 3i) - (√5 - 2i)

Solution:

(7√5 + 3i) - (√5 - 2i)

= (7√5 + 3i) + (-√5 + 2i), [Distributing the negative sign]

= (7√5 - √5) + (3 + 2)i, [Grouping the real part of the complex number and the imaginary part of the complex number.]

= 6√5 + 5i

 

3. Express the complex number (8 - 3i) - (-6 + 2i) in the standard form a + ib.

Solution:

(8 - 3i) - (-6 + 2i)

= (8 - 3i) + (6 - 2i), [Distributing the negative sign]

= (8 + 6) + (-3 – 2)i, [Grouping the real part of the complex number and the imaginary part of the complex number.]

= 14 - 5i, which is the required form.

 

Note: The final answer of Subtraction of complex numbers must be in simplest or standard form a + ib.





11 and 12 Grade Math 

From Subtraction of Complex Numbers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on 8 Times Table | Printable Multiplication Table | Video

    Mar 18, 25 03:30 PM

    worksheet on multiplication of 8 times table
    Worksheet on 8 times table can be printed out. Homeschoolers can also use these multiplication table sheets to practice at home.

    Read More

  2. Worksheet on Roman Numerals |Roman Numerals|Symbols for Roman Numerals

    Mar 18, 25 02:47 PM

    Roman Numbers Table
    Practice the worksheet on roman numerals or numbers. This sheet will encourage the students to practice about the symbols for roman numerals and their values. Write the number for the following: (a) V…

    Read More

  3. Conversion of Roman Numeration | Roman Numerals |Hindu Arabic Numerals

    Mar 18, 25 02:12 PM

    We will learn the conversion of Roman numeration. First we will learn how to convert numbers in roman numerals. 1. Convert 579 in roman numerals.

    Read More

  4. Rules of Roman Numeration |Roman Number System|Roman Numeration System

    Mar 18, 25 09:41 AM

    Rules of Roman Numerals
    We will learn about Roman Numeration and its rules. We know that there are seven basic Roman Numerals. They are I, V, X, L, C, D and M. These numerals stand for the number 1, 5, 10, 50, 100, 500

    Read More

  5. Divisible by 2 | Test of Divisibility by 2 |Rules of Divisibility by 2

    Mar 17, 25 04:04 PM

    Divisible by 2
    A number is divisible by 2 if the digit at unit place is either 0 or multiple of 2. So a number is divisible by 2 if digit at its units place is 0, 2, 4, 6 or 8.

    Read More