Square of The Difference of Two Binomials

How to find the square of the difference of two binomials?


(a - b) (a - b) = a(a - b) - b(a - b)

                     = a2 - ab - ba + b2

                     = a2 - 2ab + b2

                     = a2 + b2 - 2ab

Therefore, (a - b)2 = a2 + b2 - 2ab

Square of the difference of two terms = square of 1st term + square of 2nd term - 2 × fist term × second term

This is called the binomial square.

It is stated as: the square of the difference of two binomials (two unlike terms) is the square of the first term plus the second term minus twice the product of the first and the second term.


Worked-out examples on square of the difference of two binomials:

1. Expand (4x - 7y)2 using the identity.

Solution:

Square of 1st term + square of 2nd term - 2 × fist term × second term

Here, a = 4x and y = 7y

= (4x)2 + (7y)2 - 2 (4x) (7y)

= 16x2 + 49y2 - 56xy

Therefore, (4x + 7y)2 = 16x2 + 49y2 - 56xy.


2. Expand (3m - 5/6 n)2 using the formula of (a - b)2.

Solution:

We know (a - b)2 = a2 + b2 - 2ab

Here, a = 3m and b = 5/6 n

= (3m)2 + (5/6 n)2 - 2 (3m) (5/6 n)

= 9 m2 + 25/36 n2 - 30/6 mn

= 9 m2 + 25/36 n2 - 5 mn

Therefore, (3m - 5/6 n)2 = 9 m2 + 25/36 n2 - 5 mn.


3. Evaluate (999)2 using the identity.

Solution:

(999)2 = (1000 – 1)2

We know, (a – b)2 = a2 + b2 – 2ab

Here, a = 1000 and b = 1

(1000 – 1)2

= (1000)2 + (1)2 – 2 (1000) (1)

= 1000000 + 1 – 2000

= 998001

Therefore, (999)2 = 998001


4. Use the formula of square of the difference of two terms to find the product of (0.1 m – 0.2 n) (0.1 m – 0.2 n).

Solution:

(0.1 m – 0.2 n) (0.1 m – 0.2 n) = (0.1 m – 0.2 n)2

We know (a – b)2 = a2 + b2 – 2ab

Here, a = 0.1 m and b = 0.2 n

= (0.1 m)2 + (0.2 n) 2 - 2 (0.1 m) (0.2 n)

= 0.01 m2 + 0.04 n2 - 0.04 mn

Therefore, (0.1 m – 0.2 n) (0.1 m – 0.2 n) = 0.01 m2 + 0.04 n2 - 0.04 mn

From the above solved problems we come to know square of a number means multiplying a number with itself, similarly, square of the difference of two binomial means multiplying the binomial by itself.








7th Grade Math Problems

8th Grade Math Practice

From Square of The Difference of Two Binomials to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. 2nd Grade Place Value | Definition | Explanation | Examples |Worksheet

    Sep 14, 24 04:31 PM

    2nd Grade Place Value
    The value of a digit in a given number depends on its place or position in the number. This value is called its place value.

    Read More

  2. Three Digit Numbers | What is Spike Abacus? | Abacus for Kids|3 Digits

    Sep 14, 24 03:39 PM

    2 digit numbers table
    Three digit numbers are from 100 to 999. We know that there are nine one-digit numbers, i.e., 1, 2, 3, 4, 5, 6, 7, 8 and 9. There are 90 two digit numbers i.e., from 10 to 99. One digit numbers are ma

    Read More

  3. Worksheet on Three-digit Numbers | Write the Missing Numbers | Pattern

    Sep 14, 24 02:12 PM

    Reading 3-digit Numbers
    Practice the questions given in worksheet on three-digit numbers. The questions are based on writing the missing number in the correct order, patterns, 3-digit number in words, number names in figures…

    Read More

  4. Comparison of Three-digit Numbers | Arrange 3-digit Numbers |Questions

    Sep 13, 24 02:48 AM

    What are the rules for the comparison of three-digit numbers? (i) The numbers having less than three digits are always smaller than the numbers having three digits as:

    Read More

  5. Comparison of Two-digit Numbers | Arrange 2-digit Numbers | Examples

    Sep 12, 24 03:07 PM

     Compare 39 and 36
    What are the rules for the comparison of two-digit numbers? We know that a two-digit number is always greater than a single digit number. But, when both the numbers are two-digit numbers

    Read More