Subscribe to our YouTube channel for the latest videos, updates, and tips.


Square of The Difference of Two Binomials

How to find the square of the difference of two binomials?


(a - b) (a - b) = a(a - b) - b(a - b)

                     = a2 - ab - ba + b2

                     = a2 - 2ab + b2

                     = a2 + b2 - 2ab

Therefore, (a - b)2 = a2 + b2 - 2ab

Square of the difference of two terms = square of 1st term + square of 2nd term - 2 × fist term × second term

This is called the binomial square.

It is stated as: the square of the difference of two binomials (two unlike terms) is the square of the first term plus the second term minus twice the product of the first and the second term.


Worked-out examples on square of the difference of two binomials:

1. Expand (4x - 7y)2 using the identity.

Solution:

Square of 1st term + square of 2nd term - 2 × fist term × second term

Here, a = 4x and y = 7y

= (4x)2 + (7y)2 - 2 (4x) (7y)

= 16x2 + 49y2 - 56xy

Therefore, (4x + 7y)2 = 16x2 + 49y2 - 56xy.


2. Expand (3m - 5/6 n)2 using the formula of (a - b)2.

Solution:

We know (a - b)2 = a2 + b2 - 2ab

Here, a = 3m and b = 5/6 n

= (3m)2 + (5/6 n)2 - 2 (3m) (5/6 n)

= 9 m2 + 25/36 n2 - 30/6 mn

= 9 m2 + 25/36 n2 - 5 mn

Therefore, (3m - 5/6 n)2 = 9 m2 + 25/36 n2 - 5 mn.


3. Evaluate (999)2 using the identity.

Solution:

(999)2 = (1000 – 1)2

We know, (a – b)2 = a2 + b2 – 2ab

Here, a = 1000 and b = 1

(1000 – 1)2

= (1000)2 + (1)2 – 2 (1000) (1)

= 1000000 + 1 – 2000

= 998001

Therefore, (999)2 = 998001


4. Use the formula of square of the difference of two terms to find the product of (0.1 m – 0.2 n) (0.1 m – 0.2 n).

Solution:

(0.1 m – 0.2 n) (0.1 m – 0.2 n) = (0.1 m – 0.2 n)2

We know (a – b)2 = a2 + b2 – 2ab

Here, a = 0.1 m and b = 0.2 n

= (0.1 m)2 + (0.2 n) 2 - 2 (0.1 m) (0.2 n)

= 0.01 m2 + 0.04 n2 - 0.04 mn

Therefore, (0.1 m – 0.2 n) (0.1 m – 0.2 n) = 0.01 m2 + 0.04 n2 - 0.04 mn

From the above solved problems we come to know square of a number means multiplying a number with itself, similarly, square of the difference of two binomial means multiplying the binomial by itself.








7th Grade Math Problems

8th Grade Math Practice

From Square of The Difference of Two Binomials to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Conversion of Temperature | Temperature Worksheets | Ans

    Jun 24, 25 02:20 AM

    Worksheet on Conversion of Temperature
    We will practice the questions given in the worksheet on conversion of temperature from one scale into another. We know the two different temperature scales are the Fahrenheit scale and the

    Read More

  2. Worksheet on Temperature |Celsius to Fahrenheit, Fahrenheit to Celsius

    Jun 24, 25 01:58 AM

    Worksheet on Temperature
    In the worksheet on temperature we will solve 10 different types of questions.1. Which is colder 32°F or 0°C? 2. Water boils at ...°C and freezes at ....°F.

    Read More

  3. 5th Grade Temperature | Fahrenheit Scale | Celsius Scale | Thermometer

    Jun 24, 25 12:28 AM

    Mercury Thermometer
    We will discuss here about the concept of temperature. We have already learned about various types of measurements like length, mass capacity and time. But if we have fever, non of these measurements

    Read More

  4. Converting the Temperature from Fahrenheit to Celsius | Examples

    Jun 20, 25 12:53 PM

    In converting the temperature from Fahrenheit to Celsius the formula is, C = (5/9)(F - 32); The steps of converting from Fahrenheit to Celsius are reversed here.

    Read More

  5. Converting the Temperature from Celsius to Fahrenheit | Examples

    Jun 20, 25 12:01 PM

    In converting the temperature from Celsius to Fahrenheit the formula is F = (9/5)C + 32. Steps of converting from Celsius (°C) to Fahrenheit (°F)

    Read More