Sign of the Quadratic Expression

We already acquainted with the general form of quadratic expression ax^2 + bx + c now we will discuss about the sign of the quadratic expression ax^2 + bx + c = 0 (a ≠ 0).

When x be real then, the sign of the quadratic expression ax^2 + bx + c is the same as a, except when the roots of the quadratic equation ax^2 + bx + c = 0 (a ≠ 0) are real and unequal and x lies between them.

Proof:

We know the general form of quadratic equation ax^2 + bx + c = 0 (a ≠ 0) ..................... (i)

Let α and β be the roots of the equation ax^2 + bx + c = 0 (a ≠ 0). Then, we get

α + β = -b/a and αβ = c/a

Now, ax^2 + bx + c = a(x^2 + b/a x + c/a)

= a[x^2 - (α + β)x + αβ]

= a[x(x - α) - β(x - α)]

or, ax^2 + bx + c = a(x - α)(x - β) ..................... (ii)

 

Case I:

Let us assume that the roots α and β of equation ax^2 + bx + c = 0 (a ≠ 0) are real and unequal and α > β. If x be real and β < x < α then,

x - α < 0 and x - β > 0

Therefore, (x - α)(x - β) < 0

Therefore, from ax^2 + bx + c = a(x - α)(x - β) we get,

ax^2 + bx + c > 0 when a < 0

and ax^2 + bx + c < 0 when a > 0

Therefore, the quadratic expression ax^2 + bx + c has a sign of opposite to that of a when the roots of ax^2 + bx + c = 0 (a ≠ 0) are real and unequal and x lie between them.


Case II:

Let the roots of the equation ax^2 + bx + c = 0 (a ≠ 0) be real and equal i.e., α = β.

Then, from ax^2 + bx + c = a(x - α)(x - β) we have,

ax^2 + bx + c = a(x - α)^2 ................ (iii)

Now, for real values of x we have, (x - α)^2 > 0.

Therefore, from ax^2 + bx + c = a(x - α)^2 we clearly see that the quadratic expression ax^2 + bx + c  has the same sign as a.


Case III:

Let us assume α and β be real and unequal and α > β. If x is real and x < β then,

x - α < 0 (Since, x < β and β < α) and x -  β < 0

(x - α)(x - β) > 0

Now, if x > α then x – α >0 and x – β > 0 ( Since, β < α)

(x - α)(x - β) > 0

Therefore, if x < β or x > α then from ax^2 + bx + c = a(x - α)(x - β) we get,

ax^2 + bx + c > 0 when a > 0

and ax^2 + bx + c < 0 when a < 0

Therefore, the quadratic expression ax^2 + bx + c has the same sign as a when the roots of the equation ax^2 + bx + c = 0 (a ≠ 0) are real and unequal and x does not lie between them.


Case IV:

Let us assume the roots of the equation ax^2 + bx + c = 0 (a ≠ 0) be imaginary. Then we can take, α = p + iq and β = p - iq where p and q are real and i = √-1.

Again from ax^2 + bx + c = a(x - α)(x - β) we get

ax^2 + bx + c = a(x - p - iq)(x - p + iq)

or, ax^2 + bx + c = a[(x – p)^2 + q^2] .....................(iv)

Hence, (x - p)^2 + q^2 > 0 for all real values of x (Since, p, q are real)

Therefore, from ax^2 + bx + c = a[(x - p)^2 + q^2] we have,

ax^2 + bx + c > 0 when a > 0

and ax^2 + bx + c < 0 when a < 0.

Therefore, for all real values of x from the quadratic expression ax^2 + bx + c we get the same sign as a when the roots of ax^2 + bx + c = 0 (a ≠ 0) are imaginary.


Notes:

(i) When the discriminant b^2 - 4ac = 0 then the roots of the quadratic equation ax^2 + bx + c = 0 are equal. Therefore, for all real x, the quadratic expression ax^2 + bx + c becomes a perfect square when discriminant b^2 -4ac = 0.

(ii) When a, b are c are rational and discriminant b^2 - 4ac is a positive perfect square the quadratic expression ax^2 + bx + c can be expressed as the product of two linear factors with rational coefficients.




11 and 12 Grade Math 

From Sign of the Quadratic Expression to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Thousandths Place in Decimals | Decimal Place Value | Decimal Numbers

    Jul 20, 24 03:45 PM

    Thousandths Place in Decimals
    When we write a decimal number with three places, we are representing the thousandths place. Each part in the given figure represents one-thousandth of the whole. It is written as 1/1000. In the decim…

    Read More

  2. Hundredths Place in Decimals | Decimal Place Value | Decimal Number

    Jul 20, 24 02:30 PM

    Hundredths Place in Decimals
    When we write a decimal number with two places, we are representing the hundredths place. Let us take plane sheet which represents one whole. Now, we divide the sheet into 100 equal parts. Each part r…

    Read More

  3. Tenths Place in Decimals | Decimal Place Value | Decimal Numbers

    Jul 20, 24 12:03 PM

    Tenth Place in Decimals
    The first place after the decimal point is tenths place which represents how many tenths are there in a number. Let us take a plane sheet which represents one whole. Now, divide the sheet into ten equ…

    Read More

  4. Representing Decimals on Number Line | Concept on Formation of Decimal

    Jul 20, 24 10:38 AM

    Representing decimals on number line shows the intervals between two integers which will help us to increase the basic concept on formation of decimal numbers.

    Read More

  5. Decimal Place Value Chart |Tenths Place |Hundredths Place |Thousandths

    Jul 20, 24 01:11 AM

    Decimal place value chart
    Decimal place value chart are discussed here: The first place after the decimal is got by dividing the number by 10; it is called the tenths place.

    Read More