Sign of the Quadratic Expression

We already acquainted with the general form of quadratic expression ax^2 + bx + c now we will discuss about the sign of the quadratic expression ax^2 + bx + c = 0 (a ≠ 0).

When x be real then, the sign of the quadratic expression ax^2 + bx + c is the same as a, except when the roots of the quadratic equation ax^2 + bx + c = 0 (a ≠ 0) are real and unequal and x lies between them.

Proof:

We know the general form of quadratic equation ax^2 + bx + c = 0 (a ≠ 0) ..................... (i)

Let α and β be the roots of the equation ax^2 + bx + c = 0 (a ≠ 0). Then, we get

α + β = -b/a and αβ = c/a

Now, ax^2 + bx + c = a(x^2 + b/a x + c/a)

= a[x^2 - (α + β)x + αβ]

= a[x(x - α) - β(x - α)]

or, ax^2 + bx + c = a(x - α)(x - β) ..................... (ii)

 

Case I:

Let us assume that the roots α and β of equation ax^2 + bx + c = 0 (a ≠ 0) are real and unequal and α > β. If x be real and β < x < α then,

x - α < 0 and x - β > 0

Therefore, (x - α)(x - β) < 0

Therefore, from ax^2 + bx + c = a(x - α)(x - β) we get,

ax^2 + bx + c > 0 when a < 0

and ax^2 + bx + c < 0 when a > 0

Therefore, the quadratic expression ax^2 + bx + c has a sign of opposite to that of a when the roots of ax^2 + bx + c = 0 (a ≠ 0) are real and unequal and x lie between them.


Case II:

Let the roots of the equation ax^2 + bx + c = 0 (a ≠ 0) be real and equal i.e., α = β.

Then, from ax^2 + bx + c = a(x - α)(x - β) we have,

ax^2 + bx + c = a(x - α)^2 ................ (iii)

Now, for real values of x we have, (x - α)^2 > 0.

Therefore, from ax^2 + bx + c = a(x - α)^2 we clearly see that the quadratic expression ax^2 + bx + c  has the same sign as a.


Case III:

Let us assume α and β be real and unequal and α > β. If x is real and x < β then,

x - α < 0 (Since, x < β and β < α) and x -  β < 0

(x - α)(x - β) > 0

Now, if x > α then x – α >0 and x – β > 0 ( Since, β < α)

(x - α)(x - β) > 0

Therefore, if x < β or x > α then from ax^2 + bx + c = a(x - α)(x - β) we get,

ax^2 + bx + c > 0 when a > 0

and ax^2 + bx + c < 0 when a < 0

Therefore, the quadratic expression ax^2 + bx + c has the same sign as a when the roots of the equation ax^2 + bx + c = 0 (a ≠ 0) are real and unequal and x does not lie between them.


Case IV:

Let us assume the roots of the equation ax^2 + bx + c = 0 (a ≠ 0) be imaginary. Then we can take, α = p + iq and β = p - iq where p and q are real and i = √-1.

Again from ax^2 + bx + c = a(x - α)(x - β) we get

ax^2 + bx + c = a(x - p - iq)(x - p + iq)

or, ax^2 + bx + c = a[(x – p)^2 + q^2] .....................(iv)

Hence, (x - p)^2 + q^2 > 0 for all real values of x (Since, p, q are real)

Therefore, from ax^2 + bx + c = a[(x - p)^2 + q^2] we have,

ax^2 + bx + c > 0 when a > 0

and ax^2 + bx + c < 0 when a < 0.

Therefore, for all real values of x from the quadratic expression ax^2 + bx + c we get the same sign as a when the roots of ax^2 + bx + c = 0 (a ≠ 0) are imaginary.


Notes:

(i) When the discriminant b^2 - 4ac = 0 then the roots of the quadratic equation ax^2 + bx + c = 0 are equal. Therefore, for all real x, the quadratic expression ax^2 + bx + c becomes a perfect square when discriminant b^2 -4ac = 0.

(ii) When a, b are c are rational and discriminant b^2 - 4ac is a positive perfect square the quadratic expression ax^2 + bx + c can be expressed as the product of two linear factors with rational coefficients.




11 and 12 Grade Math 

From Sign of the Quadratic Expression to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Word Problems on Area and Perimeter | Free Worksheet with Answers

    Jul 26, 24 04:58 PM

    word problems on area and perimeter

    Read More

  2. Worksheet on Perimeter | Perimeter of Squares and Rectangle | Answers

    Jul 26, 24 04:37 PM

    Most and Least Perimeter
    Practice the questions given in the worksheet on perimeter. The questions are based on finding the perimeter of the triangle, perimeter of the square, perimeter of rectangle and word problems. I. Find…

    Read More

  3. Perimeter and Area of Irregular Figures | Solved Example Problems

    Jul 26, 24 02:20 PM

    Perimeter of Irregular Figures
    Here we will get the ideas how to solve the problems on finding the perimeter and area of irregular figures. The figure PQRSTU is a hexagon. PS is a diagonal and QY, RO, TX and UZ are the respective d…

    Read More

  4. Perimeter and Area of Plane Figures | Definition of Perimeter and Area

    Jul 26, 24 11:50 AM

    Perimeter of a Triangle
    A plane figure is made of line segments or arcs of curves in a plane. It is a closed figure if the figure begins and ends at the same point. We are familiar with plane figures like squares, rectangles…

    Read More

  5. 5th Grade Math Problems | Table of Contents | Worksheets |Free Answers

    Jul 26, 24 01:35 AM

    In 5th grade math problems you will get all types of examples on different topics along with the solutions. Keeping in mind the mental level of child in Grade 5, every efforts has been made to introdu…

    Read More