Sign of the Quadratic Expression

We already acquainted with the general form of quadratic expression ax^2 + bx + c now we will discuss about the sign of the quadratic expression ax^2 + bx + c = 0 (a ≠ 0).

When x be real then, the sign of the quadratic expression ax^2 + bx + c is the same as a, except when the roots of the quadratic equation ax^2 + bx + c = 0 (a ≠ 0) are real and unequal and x lies between them.

Proof:

We know the general form of quadratic equation ax^2 + bx + c = 0 (a ≠ 0) ..................... (i)

Let α and β be the roots of the equation ax^2 + bx + c = 0 (a ≠ 0). Then, we get

α + β = -b/a and αβ = c/a

Now, ax^2 + bx + c = a(x^2 + b/a x + c/a)

= a[x^2 - (α + β)x + αβ]

= a[x(x - α) - β(x - α)]

or, ax^2 + bx + c = a(x - α)(x - β) ..................... (ii)

 

Case I:

Let us assume that the roots α and β of equation ax^2 + bx + c = 0 (a ≠ 0) are real and unequal and α > β. If x be real and β < x < α then,

x - α < 0 and x - β > 0

Therefore, (x - α)(x - β) < 0

Therefore, from ax^2 + bx + c = a(x - α)(x - β) we get,

ax^2 + bx + c > 0 when a < 0

and ax^2 + bx + c < 0 when a > 0

Therefore, the quadratic expression ax^2 + bx + c has a sign of opposite to that of a when the roots of ax^2 + bx + c = 0 (a ≠ 0) are real and unequal and x lie between them.


Case II:

Let the roots of the equation ax^2 + bx + c = 0 (a ≠ 0) be real and equal i.e., α = β.

Then, from ax^2 + bx + c = a(x - α)(x - β) we have,

ax^2 + bx + c = a(x - α)^2 ................ (iii)

Now, for real values of x we have, (x - α)^2 > 0.

Therefore, from ax^2 + bx + c = a(x - α)^2 we clearly see that the quadratic expression ax^2 + bx + c  has the same sign as a.


Case III:

Let us assume α and β be real and unequal and α > β. If x is real and x < β then,

x - α < 0 (Since, x < β and β < α) and x -  β < 0

(x - α)(x - β) > 0

Now, if x > α then x – α >0 and x – β > 0 ( Since, β < α)

(x - α)(x - β) > 0

Therefore, if x < β or x > α then from ax^2 + bx + c = a(x - α)(x - β) we get,

ax^2 + bx + c > 0 when a > 0

and ax^2 + bx + c < 0 when a < 0

Therefore, the quadratic expression ax^2 + bx + c has the same sign as a when the roots of the equation ax^2 + bx + c = 0 (a ≠ 0) are real and unequal and x does not lie between them.


Case IV:

Let us assume the roots of the equation ax^2 + bx + c = 0 (a ≠ 0) be imaginary. Then we can take, α = p + iq and β = p - iq where p and q are real and i = √-1.

Again from ax^2 + bx + c = a(x - α)(x - β) we get

ax^2 + bx + c = a(x - p - iq)(x - p + iq)

or, ax^2 + bx + c = a[(x – p)^2 + q^2] .....................(iv)

Hence, (x - p)^2 + q^2 > 0 for all real values of x (Since, p, q are real)

Therefore, from ax^2 + bx + c = a[(x - p)^2 + q^2] we have,

ax^2 + bx + c > 0 when a > 0

and ax^2 + bx + c < 0 when a < 0.

Therefore, for all real values of x from the quadratic expression ax^2 + bx + c we get the same sign as a when the roots of ax^2 + bx + c = 0 (a ≠ 0) are imaginary.


Notes:

(i) When the discriminant b^2 - 4ac = 0 then the roots of the quadratic equation ax^2 + bx + c = 0 are equal. Therefore, for all real x, the quadratic expression ax^2 + bx + c becomes a perfect square when discriminant b^2 -4ac = 0.

(ii) When a, b are c are rational and discriminant b^2 - 4ac is a positive perfect square the quadratic expression ax^2 + bx + c can be expressed as the product of two linear factors with rational coefficients.




11 and 12 Grade Math 

From Sign of the Quadratic Expression to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Multiply a Number by a 2-Digit Number | Multiplying 2-Digit by 2-Digit

    Mar 27, 24 05:21 PM

    Multiply 2-Digit Numbers by a 2-Digit Numbers
    How to multiply a number by a 2-digit number? We shall revise here to multiply 2-digit and 3-digit numbers by a 2-digit number (multiplier) as well as learn another procedure for the multiplication of…

    Read More

  2. Multiplication by 1-digit Number | Multiplying 1-Digit by 4-Digit

    Mar 26, 24 04:14 PM

    Multiplication by 1-digit Number
    How to Multiply by a 1-Digit Number We will learn how to multiply any number by a one-digit number. Multiply 2154 and 4. Solution: Step I: Arrange the numbers vertically. Step II: First multiply the d…

    Read More

  3. Multiplying 3-Digit Number by 1-Digit Number | Three-Digit Multiplicat

    Mar 25, 24 05:36 PM

    Multiplying 3-Digit Number by 1-Digit Number
    Here we will learn multiplying 3-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. 1. Multiply 201 by 3 Step I: Arrange the numb…

    Read More

  4. Multiplying 2-Digit Number by 1-Digit Number | Multiply Two-Digit Numb

    Mar 25, 24 04:18 PM

    Multiplying 2-Digit Number by 1-Digit Number
    Here we will learn multiplying 2-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. Examples of multiplying 2-digit number by

    Read More

  5. Worksheet on Multiplying 1-Digit Numbers |Multiplying One Digit Number

    Mar 25, 24 03:39 PM

    Multiplication tables will help us to solve the worksheet on multiplying 1-digit numbers. The questions are based on multiplying one digit number and word problems on multiplying one digit number.

    Read More