Subscribe to our YouTube channel for the latest videos, updates, and tips.


Sign of the Quadratic Expression

We already acquainted with the general form of quadratic expression ax^2 + bx + c now we will discuss about the sign of the quadratic expression ax^2 + bx + c = 0 (a ≠ 0).

When x be real then, the sign of the quadratic expression ax^2 + bx + c is the same as a, except when the roots of the quadratic equation ax^2 + bx + c = 0 (a ≠ 0) are real and unequal and x lies between them.

Proof:

We know the general form of quadratic equation ax^2 + bx + c = 0 (a ≠ 0) ..................... (i)

Let α and β be the roots of the equation ax^2 + bx + c = 0 (a ≠ 0). Then, we get

α + β = -b/a and αβ = c/a

Now, ax^2 + bx + c = a(x^2 + b/a x + c/a)

= a[x^2 - (α + β)x + αβ]

= a[x(x - α) - β(x - α)]

or, ax^2 + bx + c = a(x - α)(x - β) ..................... (ii)

 

Case I:

Let us assume that the roots α and β of equation ax^2 + bx + c = 0 (a ≠ 0) are real and unequal and α > β. If x be real and β < x < α then,

x - α < 0 and x - β > 0

Therefore, (x - α)(x - β) < 0

Therefore, from ax^2 + bx + c = a(x - α)(x - β) we get,

ax^2 + bx + c > 0 when a < 0

and ax^2 + bx + c < 0 when a > 0

Therefore, the quadratic expression ax^2 + bx + c has a sign of opposite to that of a when the roots of ax^2 + bx + c = 0 (a ≠ 0) are real and unequal and x lie between them.


Case II:

Let the roots of the equation ax^2 + bx + c = 0 (a ≠ 0) be real and equal i.e., α = β.

Then, from ax^2 + bx + c = a(x - α)(x - β) we have,

ax^2 + bx + c = a(x - α)^2 ................ (iii)

Now, for real values of x we have, (x - α)^2 > 0.

Therefore, from ax^2 + bx + c = a(x - α)^2 we clearly see that the quadratic expression ax^2 + bx + c  has the same sign as a.


Case III:

Let us assume α and β be real and unequal and α > β. If x is real and x < β then,

x - α < 0 (Since, x < β and β < α) and x -  β < 0

(x - α)(x - β) > 0

Now, if x > α then x – α >0 and x – β > 0 ( Since, β < α)

(x - α)(x - β) > 0

Therefore, if x < β or x > α then from ax^2 + bx + c = a(x - α)(x - β) we get,

ax^2 + bx + c > 0 when a > 0

and ax^2 + bx + c < 0 when a < 0

Therefore, the quadratic expression ax^2 + bx + c has the same sign as a when the roots of the equation ax^2 + bx + c = 0 (a ≠ 0) are real and unequal and x does not lie between them.


Case IV:

Let us assume the roots of the equation ax^2 + bx + c = 0 (a ≠ 0) be imaginary. Then we can take, α = p + iq and β = p - iq where p and q are real and i = √-1.

Again from ax^2 + bx + c = a(x - α)(x - β) we get

ax^2 + bx + c = a(x - p - iq)(x - p + iq)

or, ax^2 + bx + c = a[(x – p)^2 + q^2] .....................(iv)

Hence, (x - p)^2 + q^2 > 0 for all real values of x (Since, p, q are real)

Therefore, from ax^2 + bx + c = a[(x - p)^2 + q^2] we have,

ax^2 + bx + c > 0 when a > 0

and ax^2 + bx + c < 0 when a < 0.

Therefore, for all real values of x from the quadratic expression ax^2 + bx + c we get the same sign as a when the roots of ax^2 + bx + c = 0 (a ≠ 0) are imaginary.


Notes:

(i) When the discriminant b^2 - 4ac = 0 then the roots of the quadratic equation ax^2 + bx + c = 0 are equal. Therefore, for all real x, the quadratic expression ax^2 + bx + c becomes a perfect square when discriminant b^2 -4ac = 0.

(ii) When a, b are c are rational and discriminant b^2 - 4ac is a positive perfect square the quadratic expression ax^2 + bx + c can be expressed as the product of two linear factors with rational coefficients.




11 and 12 Grade Math 

From Sign of the Quadratic Expression to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 8 Times Table | Multiplication Table of 8 | Read Eight Times Table

    May 18, 25 04:33 PM

    Printable eight times table
    In 8 times table we will memorize the multiplication table. Printable multiplication table is also available for the homeschoolers. 8 × 0 = 0 8 × 1 = 8 8 × 2 = 16 8 × 3 = 24 8 × 4 = 32 8 × 5 = 40

    Read More

  2. Worksheet on Average | Word Problem on Average | Questions on Average

    May 17, 25 05:37 PM

    In worksheet on average interest we will solve 10 different types of question. Find the average of first 10 prime numbers. The average height of a family of five is 150 cm. If the heights of 4 family

    Read More

  3. How to Find the Average in Math? | What Does Average Mean? |Definition

    May 17, 25 04:04 PM

    Average 2
    Average means a number which is between the largest and the smallest number. Average can be calculated only for similar quantities and not for dissimilar quantities.

    Read More

  4. Problems Based on Average | Word Problems |Calculating Arithmetic Mean

    May 17, 25 03:47 PM

    Here we will learn to solve the three important types of word problems based on average. The questions are mainly based on average or mean, weighted average and average speed.

    Read More

  5. Rounding Decimals | How to Round a Decimal? | Rounding off Decimal

    May 16, 25 11:13 AM

    Round off to Nearest One
    Rounding decimals are frequently used in our daily life mainly for calculating the cost of the items. In mathematics rounding off decimal is a technique used to estimate or to find the approximate

    Read More